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1 Introduction and description of results

In heterotic E8 × E8 string theory models of N = 1 supersymmetry in 4D arise by com-

pactification on a Calabi-Yau threefold X with vector bundle V . Originally the case of

V the tangent bundle was considered which led to an unbroken gauge group E6 (times a

hidden E8). The generalisation to an SU(n) bundle V gives unbroken GUT groups like

SO(10) and SU(5) (we will in the following focus on the visible sector and may assume an

E8 bundle V2 embedded in the second E8). To be able to handle the SU(n) bundle V most

explicitly we assume that V arises by the spectral cover construction for bundles on an X

which has an elliptic fibration π : X → B. This description uses a surface C ⊂ X given by

an n-fold (ramified) cover of the base B and a line bundle L on C. Assuming C ample the

continuous moduli of V come just from the deformations of C in X; these are given by the

polynomial coefficients entering the defining equation of C.

For a holomorphic curve b, arising as support of a world-sheet instanton, to contribute

to the superpotential one assumes that b is isolated and rational. In the following we want

to bring to bear the explicit information about the bundle V provided by the spectral cover

construction; we will therefore restrict us to the case of horizontal curves, i.e. curves b lying

in B. If the world-sheet instanton contribution Wb supported on b is generically nonzero

one wants to have the finer information how this contribution depends on the bundle (and

possibly complex structure) moduli. This is described by the Pfaffian prefactor Pfaff

of the classical instanton contribution ei
R

b J . Pfaff is given by a generally complicated

determinantal expression in the bundle moduli.

Because of holomorphic dependence crucial is here the sublocus in the moduli space

where Pfaff vanishes. This leads to an identification of Pfaff with a geometrical de-

terminantal expression whose vanishing controls the vanishing of Pfaff . In some cases

Pfaff vanishes identically in the moduli for well-understood reasons. More interesting

is the case where Pfaff is generically nonvanishing in the moduli. Especially interest-

ing, and the raison d’être of the present paper, is the case where the Pfaffian shows some

structure, i.e. is not as complicated as generically under the given circumstances. This

means more precisely that one has a nontrivial factorisation like Pfaff = fk with k > 1,

or Pfaff = fg or even Pfaff = fkg. This can simplify the search for zeroes of the

superpotential, and in a case with a multiplicity k > 1 also of its derivative.

A small set of three examples of such behavior was found [8] by using computer calcula-

tion of some large determinants. This had the character (like a fourth example of vanishing

Pfaffian) of a surprising simplification arising by an intransparent (purely numerical) brute-

force computation. Our goal here is to get a conceptual understanding (i.e. beyond doing

algebra for concrete matrix expressions) of the way such a simplifying structure arises. In

– 1 –
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the present paper we explain the case of the vanishing Pfaffian and the occurrence of the

factor f ; here explaining means we give a conceptual, non-computational reason for the

examples and generalise them to further cases; the question of multiplicity k of f will be

dealt with in a separate paper as will be the treatment of the somewhat differently behaved

second factor g (the Giant Q11 in example 1, c.f. below).

In the rest of this introduction we will first recall more precisely the numerical results

of [8]; then we will describe what is derived conceptually in the present paper and state the

generalisations. In section 2 we recall some facts about the spectral cover construction of

bundles. In section 3 we apply this to our case by restricting the construction to the elliptic

surface E lying above the instanton curve b ⊂ B in the elliptic fibration, providing a spectral

curve c and a line bundle l on it. We investigate some special loci in moduli space for one

of our main example classes, the SU(3) bundles. In section 4 we recall from [1] and [8]

some general conditions for world-sheet instantons to contribute to the superpotential and

make these conditions explicit in the parameters of the construction.

In section 5 we explain the main idea of the paper: how a factor in the Pfaffian

can be explained by reduction to a different line bundle l̄ which is ’simpler’ than l. In

section 6 we describe how this idea can be practically implemented if one can imposes a

certain (’equality’) condition such that the resulting question for l̄ is again controlled by

a determinantal expression. Here we give an (in a certain sense) exhaustive list of cases

where the reasoning described applies. In section 7 we describe how the case of a generically

vanishing Pfaffian fits into the set-up outlined so far. In section 8, which has the character

of an insert, we show how the argument described so far has to be supplemented if some

assumptions are weakened; this will be relevant for example 1. In section 9 we discuss in

detail the examples of [8] and corresponding generalisations to which they give rise.

The appendices collect auxiliary investigations. Appendix A gives the polynomial fac-

tors of Pfaff in the examples. Appendix B collects facts about (horizontal) rational curves

in the Calabi-Yau threefold X. Appendix C gives Lemmata conc. the cohomological con-

tribution criteria for instantons. Appendix D points to a different cohomological method,

alternative to the procedure in section 5. Appendix E shows how the case of a negative

bundle parameter λ is related to the usual procedure for −λ (cf. example 1). Appendix F

shows how one obtains the exhaustive lists for cases of reduction or vanishing Pfaffian.

Appendix G gives details connecting the structural investigations and concrete matrix rep-

resentations. Appendix H illustrates the special case χ = 0 and shows a case of Pfaff ≡ 0

algebraically. Appendix I establishes needed facts and notation for symmetrized tensor

products and resultants.

1.1 Some experimental results

Some examples were found experimentally via computer evaluations of the occurring large

determinants [8], cf. table 1. The cases concerned spectral SU(3) bundles of bundle pa-

rameters λ ∈ 1
2Z and r = ηb ∈ Z (they are defined in section 2 and 3.2 and are needed here

only to display the results in an overview) with b the base of the P1-fibration on B = Fk

– 2 –
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Example λ r Fk Pfaff

1 −5/2 4 F1 f11g

2 3/2 5 F1 f4

3 3/2 1 F2 0

4 3/2 2 F2 f4

Table 1. The factorisations of Pfaff in the Examples. The detailed polynomials expressions of

the factors of Pfaff are given in appendix A.

1.2 Conceptual explanations and generalisations

When we make in section 3 the transition from a description of V over X via the spectral

surface C and the line bundle L on it to the corresponding notions on E we will, besides the

spectral curve c := C|E , also introduce the corresponding line bundle L|c. And as we are

able, under our assumptions, to describe the line bundle L on C as a restriction L = L|C
from a line bundle L on X, we will similarly be able to describe the line bundle L|c on c as

a restriction L|c = l|c from a line bundle l on E ; actually, of course, l = L|E . For all these

relations cf. section 3.3.

We note that when we wish to emphasize the dependence on a modulus t we write

Vt, Ct and so on for the corresponding objects (cf. section 1.3). The abstract modulus t

will actually turn out to be a modulus of the surface C, respectively the curve c, and will

be given concretely by polynomial coefficients of its defining equation (this will be studied

very explicitly for the case of SU(3) bundles, cf. (3.19) and (9.13), for example).

We usually take χ = c1(B) · b to be 0 or 1, with 1 the relevant case, cf. section 3.1; the

class in E = π−1(b) of the spectral cover curve c over b is ns + rF with s = σ|E the section

of the elliptic surface E and F the class of the elliptic fibre.

We will explain and generalise the experimental results in section 1.1. For the de-

generate case of example 3 a conceptual interpretation from the existence of nontrivial

sections of l(−F )|c, cf. section 7 and below, will be given (besides an algebraic explanation,

cf. section H). Example 1 has a somewhat exceptional status, cf. section 8.1 and 9.3. Ex-

amples 2 and 4 are covered below (full details for examples 2,3,4 are given in the sections

indicated below).

Vanishing Pfaffian: P faff ≡ 0. Let us begin with the case where the Pfaffian van-

ishes identically. This happens in the following cases (in section 6.3.1, 7 and appendix F.1

it is described under which assumptions these cases give an exhaustive description; a cor-

responding remark applies below)

• SU(n) bundles with χ = 0, r = 1, λ ∈ 1
2 + Z≥1

• SU(3) bundles with r 6≡ χ(2) and λ = 3/2

This constitutes a vast generalisation of example 3.

– 3 –
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Factorising Pfaffian: P faff = fg (including the case g = fm). In the main

case the Pfaffian factorises such that f |Pfaff . More precisely we will identify a concrete

factor f = det ῑ1 in Pfaff = det ι1 where1 (cf. section 6.3.2 and appendix F.2)

ι1 : H1
(
E , l(−F − c)

)
−→ H1

(
E , l(−F )

)
, l(−F ) = OE

(
n

(
λ +

1

2

)
s + βF

)
(1.1)

ῑ1 : H1
(
E , l̄(−F − c)

)
−→ H1

(
E , l̄(−F )

)
, l̄(−F ) = OE

(
ns + β̄F

)
(1.2)

• SU(3) bundles

♯ χ r λ l(−F ) = OE(·) l̄(−F ) = OE (·) deg Pfaff deg f

1 0 2 3
2 , 5

2 , . . . 3(λ + 1
2)s − 2λF 3s − 2F 6(λ2 − 1

4 ) 3

2 ≥ 1 5χ 3
2 6s − F 3s − F 20χ 5χ

3 χ ≥ 5χ,≡ χ(2) 3
2 6s − (r − 5χ + 1)F 3s − ( r−5χ

2 + 1)F 6r − 10χ 3r−5χ
2

4 0 4 5
2 9s − 9F 3s − 3F 72 6

5 1 5 5
2 9s − 3F 3s − F 62 5

Case 3 constitutes a vast generalisation of example 2 and 4 (why case 2 is listed

separately besides case 3 will only become clear later and is of no concern here).

• SU(4) bundles

♯ χ r λ l(−F ) = OE(·) l̄(−F ) = OE (·) deg Pfaff deg f

1 ≥ 1 9χ 1 6s − F 4s − F 20χ 9χ

2 0 3 3
2 8s − 4F 4s − 2F 24 4

So case 5 of SU(3) and case 1 of SU(4) have a second factor (there certainly Pfaff 6= fk).

1.3 Overview and summary

As the issue in question - the vanishing behaviour of the Pfaffian prefactor (of a world-

sheet instanton superpotential) in dependence on the vector bundle moduli - necessarily

uses a heavy amount of algebraic-geometric notions it may be useful to provide here also a

nontechnical overview of the more detailled investigations which follow in the later sections

(herein we allow ourselves to give an only approximate description of various issues whose

more detailed aspects are dealt with in the main text).

According to the main contribution criterion which will be recalled in section 4.2 one

has as precise vanishing criterion for the Pfaffian

Pfaff(t) = 0 ⇐⇒ Γ
(
b, Vt|b ⊗Ob(−1)

)
∼= Γ

(
ct, l(−F )|ct

)
6= 0 (1.3)

1With β = r+χ
2

− λ(r − nχ) − 1 and β̄ = (r + χ) − 1
2

n+1
n−1

r − 1
2
(r − nχ) − 1.

– 4 –
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Clearly, if the line bundle2 L = Oc(D) over c whose possible sections are concerned

here is a tensor product L1⊗L2 = Oc(D1)⊗Oc(D2) of line bundles which themselves have

a nontrivial section, then also their product bundle, in question here, would have such a

section. For example, for one - auxiliary - factor L2 the existence of such a section might

be assured by a general argument, like that the line bundle is associated to an effective

divisor; thereby the problem of existence of a nontrivial section would have been reduced

from the original problem for L to the other factor L1. Because D − D1 is, as assumed,

effective one might say that the problem is reduced to a smaller line bundle

D − D1 effective −→ reduction from L to L1 (1.4)

Actually there will be an even more important sense of such a ’reduction in size’ when

going from L to L1 described later (the relevant vanishing condition will be expressed by

a determinant of a matrix of smaller size; we start to develop this technically in section 5).

Now, one of the easiest possibilities for an accessible criterion for the existence of a

section would arise if for L1 a similar determinantal expression could be found (whose van-

ishing controls the existence of a nontrivial section) as for L. For this one considers for L1

similar cohomological sequences as for L and has to see whether again, under certain condi-

tions, one can relate the space of sections in question to a map between H1-cohomologies of

line bundles over E = π−1(b) where the latter spaces have equal dimension; if that equality

condition (which we study in section 6) is satisfied one gets indeed again a determinantal

expression which controls the issue in question here, the existence of a nontrivial section

of L1

equality condition −→ determinantal expression controlling h0(c, L1) 6= 0 (1.5)

Occasionally, if another special condition is fulfilled, it may also happen that the line

bundle L1 does always3 have a section; then, of course, the same holds for L and the

Pfaffian will vanish identically on the moduli space (the corresponding vanishing condition

is studied in section 7)

vanishing condition −→ Pfaff ≡ 0 (1.6)

In carrying out this program there occurs a difficulty which deserves to be mentioned.

In the reduction step one needed to show that a certain line bundle (the bundle L2) above

is related to an effective divisor. Now in many cases when line bundles on spectral surfaces

C in X or on spectral curves c in E are considered it is enough to restrict attention to

objects induced by restriction from the ambient space, be it X or E . For example, in

our case where line bundles over the curve c ⊂ E are relevant, by restricting generality in

the manner indicated and looking only to objects like OE (αs + βF ), where b and F are

the rational base and elliptic fibre of the elliptic surface E , the question of effectiveness

reduces simply to the question whether integral coefficients are non-negative. This way

2The notations for this and the following line bundles are used - with their here indicated meaning -

only in this subsection.
3Independently of any special choice of moduli (such as making a determinantal expression vanish).

– 5 –
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of doing things suffices for some major examples, like the examples 2 and 4 which are

repeatedly studied in this paper like in [8]. However there are other examples which show

quite interesting behaviour where employing this restriction is not sufficient, like in the

example 1. More precisely what happens is this: although L2 arises as a restriction from E

to c of a line bundle L′
2 = OE(D′

2) on E it is not necessary that D′
2 is effective as a divisor

on E ; this is only sufficient

D′
2 effective

6⇐=
=⇒ D2 = D′

2|c effective (1.7)

(the difference between the easily applicable, but too strong condition of effectiveness of

D′
2 and the precise condition of effectiveness of D2 is studied in section 8). What one needs

to study actually is whether D2 is effective as a divisor on c which clearly is more difficult.

Nevertheless cases like the example 1 mentioned need for their ’factorisation reduction’ the

employment of such more subtle line bundles.

After having gone in the required technical detail through the steps described above in

sections 5 to 8 we will apply these methods to our main examples 2 or 4 and 1 in section 9.2

and 9.3, respectively. All other cases are listed in section 6.3.2 and appendix F.2.

2 Spectral SU(n) bundles over the elliptic Calabi-Yau threefold X

In case X admits an elliptic fibration π : X → B with a section σ one can describe the

bundle V explicitly via the spectral cover C of B: the data of an SU(n) bundle are encoded

by an n-fold ramified cover surface C of the base B, which datum comes down to a class

η in H1,1(B), and a line bundle L over C; the latter, under the standing assumption

h1,0(C) = 0, reduces to the datum given by a class γ in H1,1(C) (whose non-triviality is

crucial to get chiral matter [4]).

2.1 The elliptic Calabi-Yau space X over the surface B

Before describing the bundle in greater detail let us first elucidate the structure of the

space X. Thre threefold is actually given as a hypersurface in an ambient four-fold WB

which itself is defined as a P2-bundle over the base B

WB = P(L2 ⊕ L3 ⊕O) (2.1)

where L = K−1
B . The homogeneous coordinates in the fibre P2 are denoted by x, y, z and

X is the divisor given by vanishing of the defining equation zy2 = 4x3−g2xz2−g3z
3 where

g2 and g3 are sections of L4 and L6.

The base B is actually either a del Pezzo surface (including P2 and some blow-ups), a

Hirzebruch surface (plus some blow-ups) or an Enriques surface. As we will have to consider

rational curves, as support of the world-sheet instanton, in B we recall in appendix B the

relevant facts in this regard and list the possible cases.

– 6 –
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2.2 The spectral cover surface C over B

The idea of the spectral cover description of an SU(n) bundle V is to consider first the

bundle over an elliptic fibre F , and then to paste together these descriptions allowing global

twisting data. V (assumed to be fibrewise semistable) decomposes fibrewise as a direct sum

of line bundles of degree zero, encoded by a set of n points summing up to zero in the group

law: this is the point p0 = (0, 1, 0), the point at infinity x = y = ∞ in affine coordinates

with z = 1; it is globalized by the section σ. Letting this vary over the base B one gets

a hypersurface C ⊂ X, a ramified n-fold cover of B. Denoting the cohomology class of

σ(B) ⊂ X by σ one finds, allowing the twist by a line bundle M = OB(M) over B with

c1(M) = [M ] = η ∈ H1,1(B)

C = nσ + η (2.2)

For the n-tuple of points {pi | i = 1, . . . , n} (on a fibre) there exists a unique (up to a factor

in C∗) meromorphic function w of divisor (w) =
∑n

i=1(pi−p0): this means in the standard

convention for divisors of meromorphic functions that w has zeroes at the pi (i.e. f would

be holomorphic for (f) effective). This w is, given in inhomogeneous form, a polynomial

in x and y (which have a double and triple pole at p0, respectively)

w = a0 + a2x + a3y + . . . anx(n−3)/2y = 0 (2.3)

(this is for n odd;4 for n even the last term reads anx
n
2 ). Globally C is given as the

locus (2.3) with w a section of O(σ)n ⊗M (here M being understood as pulled back to

X) and ai ∈ H0(B,M⊗L−i).

η has to fulfill some conditions. As the spectral cover is an actual surface one needs

C effective ( ⇐⇒ η ≥ 0) (2.4)

(i.e. η effective). Second, to guarantee [3] that V is a stable vector bundle, one needs [7]

C irreducible ⇐⇒ {a0 = 0} irreducible (⇐⇒ η · b ≥ 0) (2.5)

and {an = 0} = C · σ effective (⇐⇒ η − nc1 ≥ 0) (2.6)

2.2.1 The moduli of V

The isomorphism class of V in this set-up will be determined by C and a certain line bundle

L over it, specified in the next subsection; its cohomology class will have to take a specific

form (to get c1(V ) = 0). Therefore an important subclass of cases (and the one to which

we restrict ourselves throughout) is given by spectral cover surfaces with the divisor C not

just effective but even ample (positive)

C ample ( =⇒ η − nc1 > 0) (2.7)

4For n = 3 in section 3.2.2 we call a0 = C, a2 = B, a3 = A and write Dm =
Pm

i=0 diu
ivm−i for D =

C, B, A when restricting the consideration to the projective line b ⊂ B with its homogeneous coordinates

(u, v); the subscript m denotes the degree (identified as r, r− 2χ, r− 3χ in section 3.2) of the homogeneous

polynomial D (the reader will not confuse the ai in (2.3) with the coefficients of A).

– 7 –
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C will then have the property h1,0(C) = 0 (inherited from X) and so line bundles on C are

characterised by their Chern classes. That is, the (continuous) bundle moduli of (X,V )

are then given just by PH0(X,OX (C)), i.e. the different choices of C which in turn are

parametrised by the polynomial coefficients of its defining equation (in addition there is a

discrete parameter λ described in the next subsection).

2.3 The line bundle L = L|C over the spectral cover surface C

One describes the SU(n) bundle V over X by a line bundle L over C

V = p∗(p
∗
CL ⊗P) (2.8)

with p : X ×B C → X and pC : X ×B C → C the projections and P the global variant of

(a symmetrized version of) the Poincare line bundle over F1 ×F2, i.e. the universal bundle

which realizes F2 as moduli space of degree zero line bundles over F1. L is specified by a

half-integral number λ. This occurs as c1(V ) = π∗

(
c1(L) + c1(C)−c1

2

)
= 0 implies

c1(L) = −
1

2

(
c1(C) − πC∗c1

)
+ γ =

nσ + η + c1

2
|C + γ (2.9)

(we will omit usually the obvious pullbacks). Here γ denotes the only generally given class

in the kernel of πC∗ : H1,1(C) → H1,1(B), i.e. (γ ∈ H1,1(X))

γ = γ|C with γ = λ
(
nσ − (η − nc1)

)
(2.10)

This gives precise integrality conditions for λ: if n is odd, then one needs actually λ ∈ 1
2 +Z;

if n is even, then λ ∈ 1
2 + Z needs c1 ≡ 0 mod2 and λ ∈ Z needs η ≡ c1 mod2.

Assuming h1,0(C) = 0 line bundles on C are characterised by their Chern classes.

Therefore one can define line bundles G and G on X and C, respectively, by

c1(G) = γ , c1(G) = γ (2.11)

(when we want to make the λ-dependence explicit we denote these by Gλ and Gλ). They

are related to corresponding divisor classes (modulo linear equivalence) G and G with

G = OX

(
G
)

, G = OC

(
G
)

(2.12)

i.e. one has G = λ(nσ − π∗(M + nKB)) and, for example, G|c = λ(ns − (r − nχ)F )|c.

Note that all these considerations of G and G apply strictly only formally as the cor-

responding Chern classes will, taken alone for themselves, be only half-integral in general;

only the full combination in (2.9) will be integral and define a proper line bundle. Similar

remarks apply to the formal decompositions written below (KB denotes here a line bundle

and also the corresponding divisor class).

Explicitly one finds for the various incarnations of the spectral line bundle

L =
(
OX(σ)n ⊗ π∗M⊗ π∗K−1

B

)1/2
⊗ G = OX

(
C + π∗ K−1

B

2
+ G

)
(2.13)

L = K
1/2
C ⊗ π∗

CK
−1/2
B ⊗ G (2.14)
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Explicitly one has for the Chern class

c1(L) = n

(
λ +

1

2

)
σ +

(
1

2
− λ

)
η +

(
1

2
+ nλ

)
c1 (2.15)

3 Spectral SU(n) bundles over the elliptic surface E

3.1 The elliptic surface E over the instanton curve b

A horizontal curve lies in two surfaces in X: in the base B and in E = π−1b, the elliptic

surface over b. Let us define the following expressions related to the restriction to E

s := σ|E , χ := c1 · b ∈ Z (3.1)

(with c1 := c1(B)). With the adjunction relation σ2 = −c1σ and (2.5) one finds

s2 = −χ ≤ 0 (3.2)

with χ ≥ 0 from our assumptions (B.8), (B.12). The tangent bundle decomposes over b

TX|b = Ob(2) ⊕Ob(ah) ⊕Ob(av) (3.3)

with the latter two terms comprising the normal bundle where ah +av = −2. If b is isolated

then ah = av = −1. Clearly for our horizontal curve b one has

ah = (b|B)2 , av = (b|E )2 := s2 = −χ (3.4)

The canonical class of the elliptic surface E is

KE = π∗
E

(
Kb + Ob(χ)

)
= OE

(
(χ − 2)F

)
=⇒ c1(E) = (2 − χ)F (3.5)

Equivalently the relative dualizing sheaf is

ωE/b = KE ⊗ π∗
E K−1

b = π∗
E Ob(χ) (3.6)

Here (cf. for example [5]; note that the discriminant of X over B has class ∆ = 12c1)

χ = χ(E ,OE ) =
1

12
e(E) = c1 · b (3.7)

So, all one needs to know about the position of b in the base B is encoded by the

number χ. Beyond that we will need the rank n of the vector bundle V and its spectral

data η, λ, or rather r, λ after the restriction to E , cf. (3.10). One upshot of the discussion

above is that χ = 1 is the relevant case to consider; for contrast we also consider χ = 0

(where the whole interpretation changes) and so keep the parameter χ manifest throughout.

For b the base in the P1-fibered Hirzebruch surface Fk = B one has the following cases

(where χ = 2 − k ≥ 0 and c1(E) = kF )

B F0 F1 F2

E K3 dP9 b × F

The case B = P2 of c1 = 3l and c1 · l = 3 or c1 · 2l = 6 gives an E of Euler number 36 or

72, respectively.
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3.2 The spectral cover curve c over b

The spectral surface C of our bundle V being an n-fold cover of the base one has

C →֒ X

πC ↓ n : 1 π ↓ F (3.8)

B = B

The support of the world-sheet instanton we consider is a rational curve b inside the base

B (in turn embedded in X by the zero section σ); specifically one may think of b as given

by the base P1
b inside the P1

f -fibered surface B = Fk. Let E := π−1b be the elliptic surface

over b and c := C|E the corresponding spectral curve of V |E

c →֒ E

πc ↓ n : 1 πE ↓ F (3.9)

b = b

(which we assume irreducible as we did for C). If the whole description is restricted from the

elliptic threefold X ⊂ WB over B (where the fourfold WB is the P2-bundle of Weierstrass

coordinates over B) to the elliptic surface E over b one gets again the equation (2.3) for

c ⊂ E ⊂ Wb (in the threefold given by the P2 bundle of Weierstrass coordinates over

b ∼= P1); what was L = K−1
B for the situation over X, becomes here L|b = Ob(χ) such that

now ai|b ∈ H0(b,Ob(r − iχ)) (where r := η · b such that M|b = Ob(r), cf. below). The

section s, i.e. concretely the (group-)zero point p0 = (x0, y0, z0) = (0, 1, 0) = (z) ∩ Ft in

each fibre over a point t = u/v ∈ P1 = b, consists, when restricted to c, out of s ·c = r−nχ

points (here (z) is the locus where z = 0).

Let us define the following expression related to the restriction to E

r := η · b ∈ Z (3.10)

So C = nσ + η gives c = ns + rF . With η = xb + yf on Fk one finds r ≥ 0 with

r = 0 ⇔ η = x b∞ where b∞ = b + kf . This case can occur only over F2 as by (2.6)

r ≥ n χ (3.11)

For C ample (as we will assume) one gets even (such that in particular always r > 0)

r > n χ (3.12)

The integer r has an interpretation as an instanton number5

c2(V ) = ησ + ω =⇒ c2(V |E ) = r (3.13)

5The class γ would not occur in the specification of a spectral bundle VE over the one-dimensional base

b where πc ∗ : H1,1(c) → H1,1(b) is injective, cf. [2], in accord with the fact that by (3.13) c2(V |E) sees only

the γ-free part of c2(V ) and not ω = −n3
−n

24
c2
1 −

n
8
η(η−nc1)−

1
2
π∗(γ

2) = −n3
−n

24
c2
1 +(λ2− 1

4
)n

2
η(η−nc1).
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The canonical bundle of c is given by (cf. (3.5))

Kc =
(
OE (c) ⊗ KE

)
|c = OE

(
ns + (r + χ − 2)F

)
|c (3.14)

For later use, cf. the comments after (3.18) below, we remark that (which is ≥ 0 under

our assumptions)

deg K1/2
c = gc − 1 = n

(
r −

n − 1

2
χ − 1

)
(3.15)

The cohomologically nontrivial line bundles on E which come from X, i.e. are of the

form OE (xs + yF ), and which become flat on c are powers of6

Λ := OE

(
ns − (r − nχ)F

)
(3.16)

3.2.1 Moduli of the spectral curve

The coefficients of the homogeneous polynomials ai are (after one overall scaling) moduli

m ∈ ME (c) = PH0(E ,OE (c)) of external motions of c in E , that is of those part of the

moduli in Mbun(X,V ) which is relevant in our consideration over E .

Behaviour over the special sublocus ΣΛ = {fΛ = 0} of the moduli space ME(c).

Consider in the moduli space ME(c)(∋ m) the specialisation locus ΣΛ where

Λ|c ∼= Oc (3.17)

and let us assume that this locus is characterised by a (set of) condition(s) fΛ(m) = 0,

say.7 Now, one of the principal objects of our study (cf. (4.9)), the line bundle l(−F )|c =

OE

(
n(λ + 1

2 )s + βF
)
|c ∼= K

1/2
c ⊗ Λ|λc , cf. (3.26) and (4.18), becomes along ΣΛ

l(−F )|c
on ΣΛ−→ OE

([(
λ +

1

2

)
(r − nχ) + β

]
F

)
|c =OE

((
r −

n − 1

2
χ − 1

)
F

)
|c

ΣΛ∼= K1/2
c

(3.18)

Note that (3.18) is a bundle of integral degree on c. We did exclude here the case n

even, χ odd, λ ∈ Z where the alternative evaluation OE(n
2 s + r−1

2 F )|c applies. So (with

the mentioned alternative evaluation understood) we see that l(−F )|c becomes along ΣΛ

effective: l(−F ) ∼= OE(mF )|c where m = r − n−1
2 χ − 1 (and similarly for n even).

3.2.2 The case of SU(3) bundles

Here (C = a0, B = a2, A = a3; m ∈ H0
(
E ,OE (3s + [m]χF )

)
for m = z, x, y; [m] = 0, 2, 3)

w = Crz + Br−2χx + Ar−3χy ∈ H0
(
E ,OE (3s + rF )

)
(3.19)

∼= zH0
(
b,O(r)

)
⊕ xH0

(
b,O(r − 2χ)

)
⊕ yH0

(
b,O(r − 3χ)

)

6For gcd(n, r−nχ) = 1, which is fulfilled automatically in the cases of application (where χ = 1, n ≤ 5).
7This locus will in general (cf. later example 1) have codimension higher than one, so f should be

interpreted as a vector-valued ’function’; i.e. two or more conditions have to be posed at the same time.
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The defining equation for c is w = Cr(t)z + Br−2χ(t)x + Ar−3χ(t)y = 0 where t =

(u, v) ∈ b with homogeneous coordinates u, v on b, i.e. (suitable pull-backs understood)

u, v ∈ H0
(
E ,OE (0s + 1F )

)
. So for the special case n = 3 the number r − nχ of points of

s ·c coincides with the degree of Ar−3χ, and the points are just the r−3χ points {p0, ti} ∈ E

in the fibres cti := Fti |c over the zeroes ti of Ar−nχ =
∏r−nχ

i=1 A
(i)
1

s|c =
∑

Ar−3χ(ti)=0

{p0, ti} (3.20)

Generically in c-moduli (for B(ti) 6= 0) these are simple8 points in the fibres Fti w.r.t. the

intersection of s = p0 with the defining line (w)ti = {C(ti)z + B(ti)x = 0} of c (unequal to

the line (z)ti = {z = 0} ⊂ P2
ti): here C(ti)z + B(ti)x = 0 determines x from z, and y from

the Weierstrass equation, giving the other two points p±i of cti = {p0 + p+
i + p−i , ti}.

The codimension one sublocus Res(A, B) = 0 in Mc. The generic result (3.20)

changes at the specialisation locus Res(A,B) = 0 (where B3(t1) = 0, cf. appendix I.1): the

(w) line (where w = 0 in the P2
t1-fibre in Wb) becomes just the (z) line and p0 becomes a

three-fold point of ct1 (where ∼ means linear equivalence)

(z)|c = 3s|c =
∑

i

{3p0, ti} = Ft1 |c +
∑

i≥2

{3p0, ti} 6= Ft1 |c +
∑

i≥2

Fti |c ∼ (r − nχ)F |c (3.21)

The codimension r − nχ sublocus A|B or Ri = 0, i = 1, . . . , r − nχ in Mc.

Here we demand that not one but all r − nχ roots of A are in common with B, i.e. A|B.

Now fΛ = 0 is (implied by) a set of r − nχ conditions Ri = 0 which are just the r − nχ

conditions B(ti) = 0, i.e. Ri = Res(B,A
(i)
1 ): demanding that all Ri = 0 the previous

argument gives now in each cti a threefold {p0, ti}, so OE (3s)|c ∼= OE ((r − 3χ)F )|c or

Λ|c ∼= Oc (cf. section 3.2.1), so (here no converse, cf. example 4 in section 9.2.2)

A|B ⇐⇒ Ri = 0,∀i =⇒ Λ|c ∼= Oc (3.22)

So one has (Ri)i = 0 =⇒ fΛ = 0. Note further that the codim r − nχ locus {Ri(m) =

0,∀i}(⊂ ΣΛ) is a subset of the codim 1 locus {Res(B,A)(m) = 0}, i.e. (Ri)i = 0 =⇒

Res(B,A) = 0, so (a power of) Res is a combination9 (in the ideal sense) of the Ri.

3.3 The line bundle l|c over the spectral cover curve c

As a further datum describing V beyond the surface C, which encodes V just fiberwise,

one has a line bundle L over C with V = p∗(p
∗
CL ⊗ P). L arises in the simplest case

as a restriction L = L|C to C of a line bundle L on X. We define also a corresponding

restriction l := L|E to E (with l|c = L|c). So one has the inclusions of line bundles

L →֒ L l|c →֒ l

↓ ↓ and ↓ ↓ (3.23)

C →֒ X c →֒ E
8Though a three-fold touching point of the line (z)t and the elliptic curve Ft in the P

2

t over t ∈ b.
9From Ri = 0,∀i one expects an (r − 3χ)-fold zero of the resultant; for a representation Res =

Pr−nχ(R1, . . . , Rr−nχ), with Pr−nχ a homogeneous polynomial of degree r − nχ in the Ri, cf. (9.5), (9.9).
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The crucial fact is that one has for spectral bundles

V |B = πC∗L such that V |b = πc∗ l|c (3.24)

Similarly to (2.13) one has with γ|E = λ
(
ns− (r −nχ)F

)
and L|b = K−1

B |b = Ob(χ) that10

l = L|E ∼= OE

(
c + π∗

EOb(χ)

2
+ G|E

)
= OE

(
ns + (r + χ)F

2

)
⊗ G|E

=⇒ l(−F ) ∼=
(
KE ⊗OE(c)

)1/2
⊗ Λλ (3.25)

l|c = Oc

(
ns + (r + χ)F

2
|c

)
⊗F = L|c ∼=

(
K

1/2
C ⊗ π∗

CK
−1/2
B

)
|c ⊗F

∼= K1/2
c ⊗ π∗

cK
−1/2
b ⊗F =⇒ l(−F )|c ∼= K1/2

c ⊗ Λλ|c = K1/2
c ⊗F (3.26)

Here we have introduced the flat (cf. below) line bundle on c given by the restriction

F = G|c = Oc

(
G|c
)

(3.27)

Explicitly one has for the Chern class of the line bundle l on E

c1(l) = n

(
λ +

1

2

)
s +

((
1

2
− λ

)
r +

(
1

2
+ nλ

)
χ

)
F (3.28)

One notes that the line bundle F over c is flat as
(
ns − (r − nχ)F

)
(ns + rF ) = 0 =⇒ deg G|c = 0 (3.29)

Note that the flat bundle F has continuous moduli corresponding to Jac(c) as h1,0(c) 6= 0

whereas we did assume h1,0(C) = 0 so that we had only the discrete twist datum γ (we

will not have to treat the ambiguities of K
1/2
c in the present paper).

4 World-sheet instantons and superpotential contribution

4.1 General case: SU(n) bundles over an instanton curve b

To set the stage we recall first some versions of the criterion for a world-sheet instanton to

contribute to the superpotential W . Let us assume that V is an SU(n) bundle, embedded

in the first E8 group. A world-sheet instanton, supported on an isolated rational curve b,

contributes according to the following criterion [1] (with V |b(−1) denoting V |b ⊗Ob(−1))

Wb 6= 0 ⇐⇒ h0
(
b, V |b(−1)

)
= 0 (4.1)

Considered with respect to the structure group SO(2n) ⊃ SU(n) (with n ≤ 8) one has

V |b =

n⊕

i=1

Ob(κi) ⊕Ob(−κi) (κi ≥ 0) (4.2)

10The equality to the second line in (3.26) follows from l2|c ⊗F−2 ∼= OE

“

(ns+ rF )+χF
”

|c = OE

“

(ns+

rF − kF ) + 2F
”

|c ∼= Kc ⊗ π∗
c K−1

b using (3.14).
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such that V |b(−1) =
⊕n

i=1 Ob(κi − 1) ⊕Ob(−κi − 1) gives

h0(b, V |b(−1)) =
∑

κi−1≥0

κi =
∑

κi (4.3)

Therefore b contributes precisely if V |b is trivial, i.e.

Wb 6= 0 ⇐⇒ V |b =

n⊕

i=1

Ob (4.4)

A corresponding framing would give n linearly independent global sections such that

Wb 6= 0 =⇒ h0(b, V |b) = n (4.5)

(This is, of course, also directly a consequence of (4.1), cf. appendix C, Lemma 1). A

counterexample to the converse of (4.5) is given by V |b = Ob ⊕Ob(1) ⊕Ob(−1).

Considered in SU(n) (as we will henceforth do) one has

V |b =

n⊕

i=1

Ob(ki) with
∑

ki = 0 (ki ∈ Z) (4.6)

where now

h0(b, V |b(−1)) =
∑

ki−1≥0

ki =
∑

ki≥0

ki (4.7)

such that one gets (noting
∑

ki = 0) again (4.4)

h0(b, V |b(−1)) = 0 ⇐⇒ ki = 0 for all i with ki ≥ 0

⇐⇒ ki = 0 for all i (4.8)

4.2 Elliptic case with spectral bundles and a base curve b

Precise criterion for Wb 6= 0.

Wb 6= 0 ⇐⇒ 0 = h0
(
b, V |b(−1)

)
= h0

(
b, πc∗l|c ⊗Ob(−1)

)
= h0

(
c, l(−F )|c

)
(4.9)

Note that l(−F )|c occurs in the short exact sequence of sheaves on E

0 −→ l(−F − c)
ι

−→ l(−F ) −→ l(−F )|c −→ 0 (4.10)

(cf. for the following also [8]) which gives a long exact sequence of cohomology groups

0 −→ H0
(
E , l(−F − c)

)
ι0−→ H0

(
E , l(−F )

)
−→ H0

(
c, l(−F )|c

)
−→ . . . (4.11)
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First, necessary criterion for Wb 6= 0.

Wb 6= 0 =⇒ dim ι0 H0
(
E , l(−F − c)

)
= dim H0

(
E , l(−F )

)
(4.12)

As ι0 is an embedding this amounts just to the condition h0
(
E , l(−F − c)

)
=

h0
(
E , l(−F )

)
. From (4.12) one gets as sufficient criterion for non-contribution of b

h0
(
E , l(−F − c)

)
= 0 , h0

(
E , l(−F )

)
> 0 =⇒ Wb = 0 (4.13)

In the following we make a technical assumption on the bundle parameter λ (cf. below)

λ > 1/2 (4.14)

Note that then, as recalled after (4.24), the second cohomology groups in the long exact

sequence (4.11) vanish, leaving only the three H0- and the three H1-terms (cf. Ex. af-

ter (C.22)). By c1(V |b) = 0 and (C.5) the two terms over c have equal dimension such that

h0
(
E , l(−F )

)
− h0

(
E , l(−F − c)

)
= h1

(
E , l(−F )

)
− h1

(
E , l(−F − c)

)
(4.15)

If criterion (4.12) is fulfilled there is a further, more precise assertion.

Second, (conditional,) precise criterion for Wb 6= 0. Let the necessary condition

for contribution (4.12) be fulfilled and λ > 1/2. Then

Wb 6= 0 ⇐⇒ dim ι1 H1
(
E , l(−F − c)

)
= dim H1

(
E , l(−F )

)
(4.16)

This follows by noting that in the long exact sequence (which can be written here as)

0 −→ H0
(
c, l(−F )|c

)
−→ H1

(
E , l(−F − c)

)
ι1−→ H1

(
E , l(−F )

)
−→ H1

(
c, l(−F )|c

)
−→ 0

the outer (by c1(V |b) = 0, cf. (C.5)), and so the inner, two spaces have equal dimension.

So (4.16) amounts to ι1 being an isomorphism (generically in the moduli).

Concretely the map ι1 is induced from multiplication with a moduli-dependent element

ι̃ ∈ H0
(
E ,OE (c)

)
(4.17)

4.3 Evaluation of the extrinsic contribution criteria

To evaluate concretely the contribution criteria note first (by c = ns + rF and (3.25))

l(−F ) = OE

(
αs + βF

)
(4.18)

l(−F − c) = OE

(
(α − n)s + (β − r)F

)
(4.19)
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We use the numerical parameters α, β given by11 (where nχ − r ≤ 0 by (3.11))

α = n

(
λ +

1

2

)
(4.20)

β = β(χ)
n,r (λ) :=

r + χ

2
− λ(r − nχ) − 1 =

(
1

2
− λ

)
r +

(
1

2
+ nλ

)
χ − 1 (4.21)

It will be useful to keep on record the following rewriting relating α and β

− (β + 1) =
α − n

n
(r − nχ) −

n + 1

2
χ (4.22)

Now h0
(
E ,OE (ps + qF )

)
vanishes, if p > 0, just for negative q (cf. appendix C,

Lemma 2)

p > 0 : h0
(
E ,OE (ps + qF )

)
= h0

(
b, πE∗OE(ps + qF )

)
= 0 ⇐⇒ q < 0 (4.23)

In view of (4.19) and (4.23) we will in the following assume

α − n > 0 , i.e. λ > 1/2 (4.24)

(for λ < −1/2 cf. appendix (E)). Then sheaf cohomology groups on E reduce,

by (C.10), (C.11), to the corresponding push-forwards (direct images) on b, cf. remark

after (4.14).

Following criterion (4.13) a sufficient condition for Wb = 0 is by (4.23)

β ≥ 0 , β − r < 0 =⇒ Wb = 0 (4.25)

whereas an equivalent formulation of the condition (4.12) (necessary for Wb 6= 0) is β < 0

h0
(
E , l(−F − c)

)
= h0

(
E , l(−F )

)
⇐=
=⇒ β < 0 (4.26)

β < 0 is sufficient as then both h0 vanish by (4.23). Remarkably, the converse holds: the

h0 in (4.26) can be equal only if both are zero (cf. appendix C, Lemma 3). So one gets

Third, necessary criterion for Wb 6= 0 (case λ > 1/2).

Wb 6= 0 =⇒ β < 0 ⇐⇒ H0
(
E , l(−F )

)
= 0 (4.27)

Remarks.

1) Note that β < 0 is automatically fulfilled for χ = 0.

2) (4.27) can be formulated as a stronger bound on η|b ((2.5) gave already r ≥ nχ)

Wb 6= 0 =⇒

(
λ −

1

2

)
r ≥

(
1

2
+ nλ

)
χ (4.28)

11The numerical specification of β by (4.21) (which in the end goes back just to (2.9), restricted to E ⊂ X)

expresses just that we tuned parameters to get c1(V ) = 0 (resp. the corresponding version restricted to E).

This was crucial to have h1(E , l(−F − c)) = h1(E , l(−F )), cf. the proof after (4.16) (working within the

assumption α > n, so that the H2-terms vanished; for a converse cf. section 6.1.1).
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This is indeed sharper: 1/2+nλ
λ−1/2 = (1+n)/2

λ−1/2 + n > n. So one gets as necessary condition

r − nχ ≥
(1 + n)/2

λ − 1/2
χ (4.29)

Let us now come back to the process of making the criteria (4.12) and (4.16) more

explicit. If one has β < 0, as we will assume, then (4.12) is fulfilled by (4.26) and one has,

by (4.16), to consider the map (which can be further explicated using (4.18)–(4.21))

H1
(
E , l(−F − c)

)
ι1−→ H1

(
E , l(−F )

)
(4.30)

This map is induced from multiplication with an element ι̃ ∈ H0
(
E ,OE (ns + rF )

)
and so

depends m ∈ ME(c) (so actually c = cm). What (4.16) says is that

Pfaff (m) = 0 ⇐⇒ det ι1 (m) = 0 (4.31)

(such that Pfaff equals, up to a constant factor, (det ι1)
m; actually m = 1 [8]). The

moduli space ME(c) has dimension h0
(
E ,OE (c)

)
− 1 which is by the index theorem

dimME(c) = h0
(
E ,OE (c)

)
− 1 = n(r + 1) −

(
n(n + 1)

2
− 1

)
χ − 1 (4.32)

= n
(
r −

n

2
χ
)
−
(n

2
− 1
)

χ + n − 1 (4.33)

in case c is positive (for b isolated we had χ = 1). Finally the degree of the determinant

in (4.31) is given (using (C.14)) by (where explicitly α(α−n)
n = (λ2 − 1

4)n)

h1
(
E , l(−F )

)
= α

(
− (β + 1)

)
+

α(α + 1)

2
χ − χ =

α(α − n)

n

(
r −

n

2
χ
)
− χ (4.34)

Another way to express the precise criterion (4.9) is (with ∼ linear equivalence)

Pfaff(m) = 0 ⇐⇒ h0
(
c, l(−F )|c

)
> 0 ⇐⇒ αs + βF |c ∼ effective (4.35)

So one has not only Ri = 0,∀i =⇒ fΛ = 0 by (3.22) but also fΛ = 0 =⇒ Pfaff = 0 by

the remarks after (3.18); if actually codim ΣΛ = 1 (cf. the remark in footnote 7) one gets12

fΛ |Pfaff (4.36)

5 The idea of reduction

The question of contribution of the world-sheet instanton supported on b to the superpo-

tential amounts to decide whether h0(c, l(−F )|c) = 0 or not in dependence on the moduli

of c (concretely, in the case of SU(3), the coefficients of the polynomials C,B,A in the

equation of c). The idea of reduction is to translate the question about h0(c, l(−F )|c) to a

simpler case. For this one introduces another (’smaller’) line bundle l̄

12Generally f = 0 ⇒ g = 0 gives immediately only f red|g where f =
Q

fki

i and f red =
Q

fi, but in our

actual cases (cf. section 9 where this remark applies in various places) f will be irreducible
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• leading to a map ῑ1 between spaces, now of lower dimension (arguing as for l(−F ));

now one has two interesting cases to consider

– under a certain equality condition these spaces have equal dimension and one is

led again to the consideration of a (moduli dependent) determinantal function

f = det ῑ1

– under a vanishing condition one has (universally in the moduli) ker ῑ1 6= 0,

i.e. f ≡ 0

• under a reduction condition l̄(−F ) is related to the original l(−F ) such that if one

has ker ῑ1 6= 0 one gets ker ι1 6= 0 (both either for certain moduli or universally),

i.e. the vanishing of Pfaff (at a special locus or universally); that is one gets

– f |Pfaff in case the equality condition applies (as f = det ῑ1 has lower degree

this gives a ’reduction’ in the problem of finding zeroes of Pfaff)

– Pfaff ≡ 0 in case the vanishing condition applies

(properly taking into account footnote 12). In the present section we will treat the reduction

condition, in section 6 the equality condition and in section 7 the vanishing condition.

5.1 The reduction condition: precise version (on c)

Concerning l(−F ) = OE(αs + βF ) we will assume in the following α > 0 (actually even

α > n by (4.24)) and the necessary condition (for contribution to the superpotential)

β < 0, cf. (4.27). We consider a second line bundle l̄(−F ) := OE (ᾱs + β̄F ) and denote the

restrictions to c by l(−F )|c = Oc(D) and l̄(−F )|c = Oc(D̄). Now assume

(
l̄(−F )

)p
|c →֒ l(−F )|c (precise reduction condition) (5.1)

for a positive integer p. So the relevant condition is

pD̄ ≤ D, i.e. D̃ = D − pD̄ is effective (5.2)

such that t ∈ H0(c,Oc(D − pD̄)), t 6= 0 exists. This gives then

s ∈ H0
(
c, l̄(−F )|c

)
=⇒ sp ∈ H0

(
c,OE (pᾱs + pβ̄F )|c

)

=⇒ spt ∈ H0
(
c,OE (αs + βF )|c

)
(5.3)

as implication for the existence of nontrivial sections. Therefore one has

h0
(
c, l̄(−F )|c

)
> 0 =⇒ h0

(
c, l(−F )|c

)
> 0 (5.4)

Here the section t has just an auxiliary status: as the difference of D and pD̄ is

effective (this is just the assumption of reduction) a nontrivial section like t will exist

in any case and the problem of existence of a nontrivial section of l(−F )|c is just re-

duced to the corresponding problem for l̄(−F ) (note that neither D nor D̄ will be effective).
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Remark. One can rephrase the procedure as follows. If one has i) the condition for a

nontrivial section (on the lhs of (5.4)) fulfilled and ii) that the reduction condition holds

i) h0(c, l̄(−F )|c) > 0 ⇐⇒ D̄ ∼ D̄′ ≥ 0 ⇐⇒ D̄ + (f) ≥ 0 (5.5)

ii) reduction ⇐⇒ D ≥ pD̄ (5.6)

(here ∼ is linear equivalence) then one gets a nontrivial section for the original bundle

h0(c, l(−F )|c) > 0 ⇐⇒ D ∼ D′ ≥ 0 ⇐= D + (fp) ≥ p(D̄ + (f)) ≥ 0 (5.7)

Precise reduction amounts according to (5.2) to the effectivity of D̃; this implies that

the complete linear system |D̃| (of effective divisors, linearly equivalent to D̃) is nonempty,

what just signals the existence of a nonzero section t of F̃ where F̃ = Oc(D̃) is the line

bundle on c such that l̄(−F )p|c ⊗ F̃ ∼= l(−F )|c. So reduction implies h0(c, F̃ ) > 0.

5.2 Strong version of the reduction condition (on E)

Actually we will usually assume the following sharper condition on E

(
l̄(−F )

)p
→֒ l(−F ) (strong reduction condition) (5.8)

This condition will imply (5.1) and is easy to check; however is is unnecessarily sharp, i.e. it

is only a sufficient condition. (5.8) amounts to the effectiveness of (α−pᾱ)s and (β−pβ̄)F ,

in other words

pᾱ ≤ α , pβ̄ ≤ β (5.9)

As β < 0 one therefore needs to have β̄ < 0; we will also assume ᾱ > 0.

6 The equality condition

The equality condition is the condition which will connect the existence of a nontrivial

section of l̄(−F )|c with the vanishing of a corresponding determinantal expression, in precise

analogy to the corresponding phenomenon for l(−F )|c, cf. (4.31).

If one finds a line bundle l̄(−F ) fulfilling (5.1) and wants to use this to find a factor

of Pfaff one still has to make sure some things. The first is the possibility to control

h0(c, l̄(−F )|c) > 0 in (5.4) again by a determinantal function like in (4.31). For this one

needs an equality condition (6.2) and when this holds one will have det ῑ1 | det ι1 (modulo

the remark before (4.36)) which reduces the problem of finding a zero of the polynomial

det ι1 of degree h1(E , l(−F )) to the polynomial det ῑ1 of degree h1(E , l̄(−F )) (the degree is

the sum of all degrees in the individual moduli, cf. for example (A.4)).

In this connection we note that one has to check that the lhs of (6.2) should be indeed

nonvanishing. In this question one has with the assumptions ᾱ > 0, β̄ < 0 and (C.14) that

h1(E , l̄(−F )) > 0 if not either i) l̄(−F ) = OE(s−F ) or ii) l̄(−F ) = OE (ᾱs−F ) with χ = 0;

i) is excluded by ᾱ ≥ n (cf. remark after (6.2)), ii) by (6.5) and (6.8).
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6.1 Numerical evaluation of the equality condition

For l̄ most of the arguments in subsect. 4.2 are not applicable: one has neither

h0(c, l̄(−F )|c) = h1(c, l̄(−F )|c), because now c1(V̄ |b) 6= 0, nor13 the vanishing of the H2-

terms in the long exact sequence (4.11). Nevertheless, from the assumption ᾱ > 0 and from

β̄ < 0, one has the vanishing of the first two terms such that still H0(c, l̄(−F )|c) ∼= Ker ῑ1:

0→H0
(
c, l̄(−F )|c

)
→H1

(
E , l̄(−F − c)

)
ῑ1→ H1

(
E , l̄(−F )

)
→H1

(
c, l̄(−F )|c

)
→ . . . (6.1)

One now wants to find cases where ῑ1 is a map between spaces of equal dimension14

h1
(
E , l̄(−F − c)

)
= h1

(
E , l̄(−F )

)
(equality condition) (6.2)

We proceed now by distinguishing the cases15 ᾱ > n and ᾱ = n.

6.1.1 The equality condition in the case ᾱ > n

To compute the difference of the sides of (6.2), one can use formula (C.14) for ᾱ, β̄ and, in

this case of ᾱ > n, also for ᾱ − n, β̄ − r and gets

h1
(
E , l̄(−F − c)

)
− h1

(
E , l̄(−F )

)
=
(
ᾱ −

n

2

)
(r − nχ) +

(
β + 1 −

r + χ

2

)
n (6.3)

Equivalently, with h2(E , l̄(−F − c)) = 0, one can use the index formula to compute

h1
(
E , l̄(−F − c)

)
− h1

(
E , l̄(−F )

)
= h0(c, l̄(−F )|c) − h1(c, l̄(−F )|c)

= deg l̄(−F )|c − deg K1/2
c

=

(
ᾱs + β̄F −

1

2
(ns + rF + (χ − 2)F )

)
(ns + rF )

=
(
ᾱ −

n

2

)
(r − nχ) +

(
β̄ + 1 −

r + χ

2

)
n (6.4)

Thus one gets vanishing just for

− (β̄ + 1) =
ᾱ − n

n
(r − nχ) −

n + 1

2
χ (6.5)

Note that this is just again the condition (4.22) (i.e., one has (6.2) if and only if c1(V̄ |E ) = 0,

expressed by the relation (4.22) between ᾱ and β̄, in this case). The integrality requirement

means for n odd (or equally for n even and χ even) that n|ᾱr while for n = 2m and χ odd

that ᾱr/m must be an odd integer.

13As α − n > 0 from α = n(λ + 1/2), λ > 1/2 does not give necessarily ᾱ − n > 0.
14Note that the evaluation by (C.11) also of the lhs of (6.2), which has with ᾱ− n a smaller s-coefficient

in l̄(−F ) = OE((ᾱ − n)s + (β̄ − r)F ) which could be potentially ≤ 0, will be appropriate as the condition

β̄ ≤ (ᾱ − n + 1)χ + r from (C.22) is fulfilled (the rhs is > 0 by (3.11) and ᾱ ≥ 0).
15Note that ᾱ < n where h1(E , l̄(−F − c)) = 0 is not interesting for us as h0(c, l̄(−F )|c) = 0 would mean

that one has no nontrivial section to start with in the procedure (5.3).
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6.1.2 The equality condition in the case ᾱ = n

Here one computes h1(E ,O(0s + (β̄ − r)F )) = −(β̄ + 1) + r and gets

h1
(
E , l̄(−F − c)

)
− h1

(
E , l̄(−F )

)
= −(β̄ + 1) + r + ᾱ(β̄ + 1) −

(
ᾱ(ᾱ + 1)

2
− 1

)
χ (6.6)

Alternatively one gets this by computing the index on c (using (6.4)) and adding

h2
(
E , l̄(−F − c)

)
= h0

(
E ,KE ⊗OE(c) ⊗ (l̄(−F ))−1

)
= h0

(
b,Ob(χ − 2 + r − β̄)

)

= −(β̄ + 1) + r + χ (6.7)

Thus one gets vanishing just for

− (β̄ + 1) =
r

n − 1
−
(n

2
+ 1
)

χ (6.8)

As this expression has to be integral one notes that for n or χ even one needs to have

r = (n − 1)ρ with ρ a positive integer; if n = 2m + 1 and χ are odd one needs to have
r

2m − 1
2 ∈ Z, i.e. that r/m is an odd integer (for example r must be odd for n = 3 with

χ odd).

6.2 Interpretation of the equality and reduction condition

We rephrase the condition (6.2) for reduction, given in the numerical parameters above, in

a more geometric form by restricting the discussion of the line bundles from E to c.

6.2.1 The conditions in the case ᾱ > n

The index computation (6.4) shows that the equality condition amounts to

l̄(−F )|c = K1/2
c ⊗ F̄ (6.9)

with F̄ a flat bundle on c playing the same role for l̄(−F )|c as does F for l(−F )|c,

cf. (3.26). F̄ being a flat bundle this is just an equation of degrees: deg l̄(−F ) = deg K
1/2
c =

deg l(−F ).

Now the precise reduction condition (5.1) implies, together with (6.9) and (3.26), the

necessary condition p deg K
1/2
c ≤ deg K

1/2
c . So for p ≥ 2 one gets the condition deg Kc ≤ 0

which in view of (3.15) comes down to r − n−1
2 χ − 1 ≤ 0 (compare the reasoning in

appendix F). One gets, in view of (3.12), that r = 1, χ = 0, i.e. the spectral curve

c = C ∩ E is an elliptic curve.

6.2.2 The conditions in the case ᾱ = n

Here the equality condition amounts to

l̄(−F )|c = K1/2
c ⊗ (ω

1/2
c/b )−

1
n−1 ⊗ F̄ (6.10)

where ωc/b = Kc ⊗ π∗
cK

−1
b is the relative dualizing sheaf with deg ω

1/2
c/b = n(r − n−1

2 χ).

Although written, for analogy with (6.9), with the (n − 1)th root of the line bundle ω
1/2
c/b

this is essentially just meant as an equation of degrees (cf. also the remarks after (6.8)).
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Now the precise reduction condition (5.1) gives, together with (6.10) and (3.26), the

necessary condition p deg K
1/2
c − p

n−1 deg ω
1/2
c/b ≤ deg K

1/2
c and so

(p − 1)

(
r −

n − 1

2
χ − 1

)
≤

p

n − 1

(
r −

n − 1

2
χ

)
(6.11)

or

(
p(n − 2) − (n − 1)

)(
r −

n − 1

2
χ − 1

)
≤ p (6.12)

This is usefully applicable for n = 3, p > 2 and n = 4, p ≥ 2, giving all cases in appendix F.2.

Actually we will proceed slightly differently in the concrete derivation in appendix F.2

(using λ ≥ p − 1
2 in (F.5) one would get back (6.12)).

6.3 All (strong) reduction cases with equality condition

One has always λ > 1
2 and λ ∈ 1

2 + Z for n odd, while for n even the case λ ∈ 1
2 + Z needs

χ even and λ ∈ Z needs r − χ even. The condition β < 0 can, according to (4.28), be

rephrased in the parameters as r − nχ ≥ (1+n)/2
λ−1/2 χ; furthermore r − nχ > 0 even for χ = 0

by (3.12). We are usually interested mainly (physically) in n = 2, 3, 4, 5 and χ = 0 (for

illustration) or 1 (b isolated). Now the detailed study in appendix F gives the following.

6.3.1 Cases with ᾱ > n

For SU(n) bundles one has for χ = 0, r = 1, λ + 1
2 ∈ pZ>1 just the p-case

l(−F ) = OE

(
n

(
λ +

1

2

)
s −

(
λ +

1

2

)
F

)
(6.13)

l̄(−F ) = OE

(
n

λ + 1
2

p
s −

λ + 1
2

p
F

)
(6.14)

Now χ = 0, r = 1 were just the conditions for an elliptic c, cf. (3.15). One gets

Kc = OE (ns + (r + χ − 2)F )|c = OE(ns − F )|c (6.15)

l(−F ) = OE (ns − F )⊗(λ+ 1
2
)|c (6.16)

So here Kc
∼= Oc

∼= l(−F )|c, h0(c, l(−F )|c) = 1 > 0 and Pfaff ≡ 0, cf. Ex. 3 below.

6.3.2 Cases with ᾱ = n

Here one has

l(−F ) = OE

(
n

(
λ +

1

2

)
s + βF

)
, β = −

((
λ −

1

2

)
r −

(
nλ +

1

2

)
χ + 1

)
(6.17)

l̄(−F ) = OE

(
ns + β̄F

)
, β̄ = −

(
1

n − 1
r −

(n

2
+ 1
)

χ + 1

)
(6.18)
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The (χ, r, λ, p)-list of occurring cases for SU(n) bundles is given in appendix F.2.

Furthermore

deg det ι1 = h1(E , l(−F )) = −α(β + 1) +

(
α(α + 1)

2
− 1

)
χ

= n

(
λ2 −

1

4

)(
r −

n

2
χ
)
− χ (6.19)

deg det ῑ1 = h1(E , l̄(−F )) = −(β̄ + 1) + r =
n

n − 1
r −

(n

2
+ 1
)

χ

=
r

n − 1
+
(
r −

n

2
χ
)
− χ (6.20)

7 The vanishing condition (including example 3)

When considering in section 6.3.1 the reduction case with ᾱ > n we saw that for χ = 0, r =

1, λ ∈ 1
2 + Z with c elliptic one gets Pfaff ≡ 0 by directly computing h0(c, l(−F )|c) =

1 > 0. In that case both, l(−F )|c and l̄(−F )|c, were powers of the trivial bundle Kc.

This type of argument can be applied more widely. Note that always dim ker ῑ1 ≤

h0(c, l̄(−F )|c) by the analog of the long exact sequence (4.11) for l̄ (with equality if

h0(E , l̄(−F )) = 0). Therefore, even is one is not in an equality case where (6.2) holds

(when vanishing of h0(c, l̄(−F )|c) = dimker ῑ1 will be controlled by det ῑ1) one gets

(vanishing condition) h1
(
E , l̄(−F − c)

)
− h1

(
E , l̄(−F )

)
> 0 =⇒ h0

(
c, l̄(−F )|c

)
> 0 (7.1)

If the reduction condition holds for p then the argument will be completed in the usual

way by noting that the existence of s ∈ H0(c, l̄(−F )|c), s 6= 0 implies spt ∈ H0(c, l(−F )|c);

therefore if the (moduli-independent) vanishing condition holds then Pfaff ≡ 0.

Let us see how this condition can be applied. If one is in the case ᾱ > n one has

h1(E , l̄(−F − c)) − h1(E , l̄(−F )) = deg l̄(−F )|c − deg K
1/2
c which can not be positive if we

want at the same time the necessary condition for reduction deg l̄(−F )|c ≤ deg l(−F )|c =

deg K
1/2
c to be fulfilled. Therefore ᾱ = n, i.e. l̄(−F ) = OE (ns + β̄F ) and we have

h1
(
E , l̄(−F − c)

)
− h1

(
E , l̄(−F )

)
= (n − 1)(β̄ + 1) + r −

(
n(n + 1)

2
− 1

)
χ

= (n − 1)
(
β̄ + 1 −

n + 2

2
χ
)

+ r (7.2)

For SU(3) or SU(4) bundles, the only new case (besides the above mentioned χ = 0, r =

1 case) where this is strictly positive is n = 3, λ = 3/2 with r 6≡ χ(2), cf. appendix F.3.

Let us take a closer look on the case of SU(3) bundles with λ = 3/2 as this will be an

important case in section 9. Here one has l(−F ) = OE(6s − (r − 5χ + 1)F ) where β < 0

means r ≥ 5χ. Let us take

l̄(−F ) =





OE

(
3s − ( r−5χ

2 + 1)F
)

if r ≡ χ(2)

OE

(
3s − r−5χ+1

2 F
)

if r 6≡ χ(2)
(7.3)
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If r ≡ χ(2) one gets a moduli-dependent statement, cf. section 9.2.

By contrast, if r 6≡ χ(2) one gets the moduli-independent statement Pfaff ≡ 0 as

here (7.2) becomes just 1 (alternatively one can also argue directly that h0(c, l̄(−F )|c) =
3
2 (r − χ − 1) − 3(r − χ − 1) + h0(c,OE ((r + χ − 2 + r−5χ+1

2 )F )|c) ≥ 1). For χ = 0, r = 1

cf. example 3. For an algebraic vanishing argument in the somewhat special χ = 0 case

cf. appendix H.

8 On the difference between the strong and the precise reduction con-

dition

Let us now come back to the precise version of the reduction condition on c instead of the

strong version on E . The latter had with (5.9) a precise numerical expession whereas (5.1)

implies only the necessary condition for the degrees

p(ᾱs + β̄F )(ns + rF ) ≤ (αs + βF )(ns + rF ) (8.1)

or explicitly16

p
(
ᾱ(r − nχ) + nβ̄

)
≤ n

(
r −

n − 1

2
χ − 1

)
(8.2)

So the logical relations are

strong reduction (eq. (5.9))
i)

=⇒ precise reduction (eq. (5.1))
ii)

=⇒ eq. (8.1) (8.3)

From the onesided implications two questions arise.

i) How much widened is the domain of possible l̄(−F )’s by considering the precise

condition (5.1) instead of the sharpened condition (5.9)?

ii) The question about sufficiency of the condition (8.1) for the precise reduction (5.1):

when is D−pD̄ on c (cf. (5.2)), which has degree ≥ 0 by (8.1), actually even effective?

Also in connection with these questions we notice the following.

ad i) Note that if the strong reduction condition is violated we need actually to check ex-

plicitely that one has h0(c, l̄(−F )|c) > 0 for which we argued only under certain

assumptions in the remark before section 6.1; for example β̄ < 0 followed only be-

cause (5.9). 16

ad ii) If the necessary condition (8.1) for precise reduction is actually saturated then

t ∈ H0(c, F̃ ), cf. remark after (5.7), is constant (F̃ is flat and then even triv-

ial; a degree zero effective divisor on c is zero); so, then reduction holds just if

l(−F )|c ∼= l̄(−F )⊗p|c.

16 Note that we always work under the assumption ᾱ ≥ n, cf. footnote 15; here the case ᾱ > n, which

implies that the rhs of (8.2) is ≤ 0 (cf. section 6.2.1), still gives β̄ ≤ 0 and even < 0 by (3.12); however a

case ᾱ = n, β̄ ≥ 0 is possible and will become relevant in section 8.1 and in the example 1 in section 9.3.
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8.1 The exceptional case β̄ = 0

We remarked above that β̄ < 0 is necessary to fulfill (5.8), i.e. concretely pβ̄ ≤ β. However,

as pointed out, this condition is unnecessarily sharp. Actually one wants only (5.1). For

this (5.9) is not necessary (so β̄ might be ≥ 0; cf. footnote 16); necessary is (8.1).

Let us try to allow β̄ = 0 (this will be relevant for example 1 in section 9.3); consider the

first two terms17 in the long exact sequence (4.11) for l̄(−F ): although still h0(E ,OE ((ᾱ−

n)s − rF )) = 0 for the first term, one has h0(E ,OE (ᾱs)) = 1 for the second one if χ > 0

and = ᾱ if χ = 0. Thus dimker ῑ1 equals h0(c, l̄(−F )) minus 1 or minus ᾱ if χ > 0 or = 0,

resp.; so the vanishing of det ῑ1 (at a point in the moduli space ME(c)) still indicates the

existence of a nontrivial section of l̄(−F )|c and one still has det ῑ1|det ι1.

Let us give the equality condition for the case β̄ = 0. Then one has h1(E , l̄(−F )) =

−(ᾱ − 1)(β̄ + 1) + ( ᾱ(ᾱ+1)
2 − 1)χ with the remark after (C.14) and gets −(β̄ + 1) = r

n−2 −
(n+2)(n−1)

2(n−2) χ which determines r (where (3.12) excludes n = 2 and (3.11) n > 2, χ = 0)

r − nχ = (n − 2)

(
n + 1

2
χ − 1

)
(8.4)

Here, with r assumed fixed by (8.4), the interpretation as in section 6.2 amounts to

l̄(−F )|c = K1/2
c ⊗ (K1/2

c )−
1

n−1 ⊗ F̄ (8.5)

For n = 3, where previously β < 0 ⇔ r ≥ 5χ, we get β̄ = 0 ⇔ r = 5χ − 1, cf. example 1.

This exceptional bundle has the degree on c (using in both cases the r-fix (8.4))

deg(l̄(−F ))|c = degOE(ns − 0F )|c = n(r − nχ) = n(n − 2)

(
n + 1

2
χ − 1

)
(8.6)

deg K1/2
c = n(n − 1)

(
n + 1

2
χ − 1

)
(8.7)

Therefore, although the conditions (5.9) for strong reduction (5.8) are violated here as

p0 6≤ β < 0, the necessary condition (8.1) for the precise reduction condition (5.1) is

fulfilled if p(n − 2) ≤ n − 1, i.e. for n ≤ 1 + p
p−1 . This holds for n = 2 or for n = 3, p = 2

where (8.1) is even saturated (and of course trivially for p = 1). When is not only the

necessary condition (8.1) for precise reduction but even the precise reduction condition (5.1)

itself fulfilled? Consider the case n = 3, p = 2 where

l(−F ) = OE

(
3

(
λ +

1

2

)
s −

(
λ −

3

2

)
(2χ − 1)F

)
(8.8)

l̄(−F ) = OE(3s − 0F ) (8.9)

Note that lλ=3/2(−F ) = l̄(−F )⊗2, and so a fortiori lλ=3/2(−F )|c = l̄(−F )⊗2|c, but the

necessary condition β < 0 from (4.27) requires here λ > 3/2, cf. example 1 in section 9. But

17Concerning the H2-terms the second one vanishes by (C.21) as ᾱ > 0 but h2(E ,OE((ᾱ−n)s− rF )) = 0

only if ᾱ > n whereas one gets for ᾱ = n that h0(b,Ob(r + χ − 2)) = r + χ − 1 if not χ = 0, r = 1.
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according to the remark before section 8.1 here reduction does hold precisely if lλ(−F )|c =

l̄(−F )⊗2|c; so reduction holds just if lλ(−F )|c = lλ=3/2(−F )|c and one needs to know the

sublocus in the moduli space ME(c) where (the isomorphism class of) l(−F )|c is actually

independent of λ, i.e. where Λ = OE (ns− (r−nχ)F )|c becomes trivial; now cf. section 9.3.

9 Some examples of SU(3) bundles

9.1 Overview over the three main examples

We illustrate the theory with some examples (for example 3 of Pfaff = 0 cf. section 7)

Ex 1 Ex 2 Ex 4

χ 1 1 0

λ 5/2 3/2 3/2

c 3s + 4F 3s + 5F 3s + 2F

Kc OE (3s + 3F )|c OE(3s + 4F )|c OE(3s)|c
Λ O(3s − F ) O(3s − 2F ) O(3s − 2F )

codim ΣΛ 1 2 1

l(−F ) O(9s − F ) O(6s − F ) O(6s − 3F )

Pfaff = det ι1 f11Q11 f4 f4

l̄(−F ) O(3s) O(3s − F ) O(3s − 2F )

f = det ῑ1 fΛ Res(B,A) fΛ

For these examples we find that f := det ῑ1 equals fΛ if that relation is possible at all,

that is if the codimension of the fΛ = 0 locus ΣΛ is 1, as in examples 1 and 4: in example

4 the naive codimension r − nχ (cf. section 3.2.2) of ΣΛ is 2 but l̄(−F ) = Λ leads to

f = fΛ; in example 2 the codimension is 2: one has to demand R1 = 0 and R2 = 0,

i.e. (R1, R2) = fΛ = (Res(B,Ai))i where A =
∏r−nχ

i=1 Ai (cf. footnote 7) and one has then

that codim ΣΛ > 1 (the general case). Although ΣΛ is a sublocus of Pfaff = 0 (cf. the

remark after (4.35)) the ’scalar function’ dividing Pfaff is Res(B,A), cf. footnote 9.

9.2 Bundles with λ = 3/2

Here one has l(−F ) = OE(6s − (r − 5χ + 1)F ) where β < 0 means r ≥ 5χ. Let us take

l̄(−F ) =





OE

(
3s − ( r−5χ

2 + 1)F
)

if r ≡ χ(2)

OE

(
3s − r−5χ+1

2 F
)

if r 6≡ χ(2)
(9.1)

For r 6≡ χ(2) we found Pfaff ≡ 0 in section 7. For r ≡ χ(2) one gets a moduli-

dependent statement: if an ρ ∈ H0(c, l̄(−F )|c), ρ 6= 0 exists (what is described by det ῑ1 =

0) then ρ2u and ρ2v are non-trivial elements of H0(c, l(−F )|c), what suggests for this case

that Pfaff = f2g. Note that at most Pfaff = f4 as deg Pfaff = 6r − 10χ,deg f =
3r−5χ

2 .
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9.2.1 The case χ ≥ 1 (including example 2 as minimal r-value)

For r = 5χ, where deg Pfaff = 4r,deg f = r and χ ≥ 1 by (3.12), one gets

l(−F ) = OE (6s − F ) (9.2)

l̄(−F ) = OE (3s − F ) (9.3)

One then has also ρz ∈ H0(c, l(−F )|c) such that possibly Pfaff = f3h in this case.

For χ = 1, where c = 3s+5F , this is realized in example 2. Note that there the matrix

induced by ῑ is m5 = D5 in (G.13), such that f = det ῑ1 = Res(A2, B3), cf. section I.1.

This is case 3χ=1 of appendix F.2. According to (4.30) one has then to consider

the map ι1 : H1
(
E ,OE (3s + (β − r)F )

)
−→ H1

(
E ,OE (6s + βF )

)
between spaces of

dimension 6r − 10χ (for concrete matrix representations cf. appendix G) This map is

induced by multiplication with an element ι̃ ∈ H0
(
E ,OE (3s + rF )

)
. The determinant

of the ι1 for r ≡ χ(2) has as factor the determinant of a corresponding map ir : ir :

H1
(
E ,OE

(
0s + (β̄ − r)F

))
−→ H1

(
E ,OE

(
3s + β̄F

))
(again induced by multiplication

with ι̃ ∈ H0
(
E ,OE (3s + rF )

)
, so depending on the same moduli) between two spaces of

dimension 1
4(6r − 10χ).

Now, what was generically s|c = {p0, t1} + {p0, t2} , Fti |c = cti = {p0 + p+
i + p−i , ti}

(with A2(ti) = 0, i = 1, 2, cf. (3.20)) changes at the specialisation locus f = det ῑ1 =

detD5 = Res(A2, B3) = 0 (where B3(t1) = 0; the non-generic case for (3.20)): the (w) line

becomes, in the P2
t1 -fibre of Wb, the (z) line and p0 becomes a three-fold point of ct1

(z)|c = 3s|c = {3p0, t1} + {3p0, t2} = Ft1 |c + {3p0, t2} 6= Ft1 |c + Ft2 |c (9.4)

In other words, in the specialisation locus f = 0 one gets (3s − F )|c ∼ effective or equiva-

lently h0(c,O(3s − F )|c) ≥ 1 (the existence of ρ 6= 0); therefore also (6s − F )|c ∼ effective

or h0(c, l(−F )|c) ≥ 1; in other words f |Pfaff .

To demand that even (3s − 2F )|c ∼ effective is a more restrictive condition, i.e. R1 =

0 = R2 is a proper sublocus of f = 0 (so here fΛ = (R1, R2), cf. footnote 7). Note that

(3s − 2F )|c ∼ effective =⇒ (3s− F )|c ∼ effective; so, if18 R1 = 0 = R0 at certain points in

moduli space, then f = 0 there, as becomes manifest in the representation

f =
1

a2
2

det




a0 a1 a2

R1 R0 0

0 R1 R0


 (9.5)

9.2.2 The case χ = 0 (including example 4 as minimal r-value)

For χ = 0 one has r even and deg Pfaff = 12 r
2 and deg f = 3 r

2 . The minimal r-value

(which must be > 0) is 2, cf. example 4, where c = 3s + 2F and

l(−F ) = OE (6s − 3F ) (9.6)

l̄(−F ) = OE (3s − 2F ) = Λ (9.7)

18Cf. section 3.2.2, we call here R2 = R0; cf. also appendix I.2.
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Precisely on the specialisation locus f = det ῑ1 = detDχ=0
3 = 0, cf. (G.15), the degree 0

line bundle l̄(−F )|c gets a nonzero section and so becomes trivial, in other words

fΛ = f (9.8)

Remark.

i) Following strictly the procedure of example 2 one would expect codim ΣΛ = 2 and

fΛ a two-component expression: the condition A2|B2 is here19 M c
0 = 0 = M c

1 while

Res(B2, A2) = det




b2 b1 b0 0

0 b2 b1 b0

a2 a1 a0 0

0 a2 a1 a0


 = det

(
M c

1 M c
0

M c
2 M c

0

)
(9.9)

(note that 0 = a0M
c
0 − a1M

c
1 + a2M

c
2 allows to eliminate M c

2). Now one has

f =
1

a2
det

(
M c

1 M c
0

M b
1 M b

0

)
(9.10)

such that the locus where M c
0 = 0 = M c

1 is certainly a subset of the f = 0 locus,

cf. the remark after (3.22). But A2|B2 is only a sufficient, not a necessary condition

for Λ|c ∼= Oc, cf. (3.22). Here, in this case of symmetry between C,B and A because

of χ = 0, the precise condition for Λ|c ∼= Oc turns out to be just linear dependence

among C,B and A which represents the single condition f = 0; this comes as here

Λ = l̄(−F ) and demanding a nontrivial section over c leads to the determinantal

condition f = 0.

ii) That 3s|c ∼ 2F |c on the locus f = 0 can also be seen directly from det ῑ1 =

detDχ=0
3 = 0, cf. (G.15), instead of arguing via the long exact sequence. The equa-

tion for the fibre of c over t1 = u/v ∈ b, say, is C2(t1)z + B2(t1)x + A2(t1)y = 0 and

these three points lie also in the divisor αz + βx + γy = 0, understood as 3s|c, where

α = C2(t1), β = B2(t1), γ = A2(t1); this divisor of degree 6 contains three further

points; we want to see that these can arise as a further fibre triplet over t2, say. So

we ask whether t1, t2(6= t1) ∈ b exist such that the 3-vectors (D2(t1)) and (D2(t2))

where D2 = C2, B2, A2 are linearly dependent, i.e. whether k ∈ C∗ exists such that

D2(t2) = kD2(t1) for D2 = C2, B2, A2 which indeed just amounts to the nontrivial

solvability of Dχ=0
3 · (kt21 − t22, kt1 − t2, k − 1)t = 0.

9.3 Example 1 with λ = 5/2

An SU(3) bundle, χ = 1 with c = 3s + 4F , so20 l(−F ) = OE

(
9s − F

)
, gives a map

ι1 : H1
(
E ,OE

(
6s − 5F

))
−→ H1

(
E ,OE

(
9s − F

))
(9.11)

19With minors w.r.t. a development of (G.15) w.r.t. the c-row, and in (9.10) also w.r.t. the b-row.
20This is reflected in the sense of appendix E from an example 1 with λ = −5/2.
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between 44-dimensional spaces by (C.14). ι1 is induced from multiplication with ι̃ =

Cz + Bx + Ay where (for the notation cf. appendix G)

ι̃ ∈ H0
(
E ,OE (3s + rF )

)
=

⊕

w′∈StB(Σ)

w′ H0
(
b, r − [w′]χ

)
=

⊕

w′∈StB(Σ)

w′ Sr−[w′] χ V (9.12)

(i.e. w′ ∈ H0(E ,OE (3s + [w′]χF )), cf. (G.4)) with the accompanying coefficients

C = c4u
4 + c3u

3v + c2u
2v2 + c1uv3 + c0v

4 ∈ Sr V = S4 V = Hom(S4 V ∗,C) (9.13)

B = b2u
2 + b1uv + b0v

2 ∈ Sr−2χ V = S2 V = Hom(S2 V ∗,C) (9.14)

A = a1u + a0v ∈ Sr−3χ V = V = Hom(V ∗,C) (9.15)

With l(−F ) being not among the strong reduction cases we adopt the more general ap-

proach of section 8.1: we use l̄(−F ) = OE(3s − 0F ) and get the map

ῑ1 : H1
(
E ,OE (0s − 4F )

)
−→ H1

(
E ,OE (3s − 0F )

)
(9.16)

between 3-dimensinal spaces. Or, in matrix form, (having β̄ = 0 the first line is absent)

mr :




C ⊙ S−β̄−2 V ∗

B ⊙ S−β̄−2+2χ V ∗

A ⊙ S−β̄−2+3χ V ∗


 (9.17)

Concretely this means one builds the map

D3 := B ⊕ A ⊙ V ∗ =




b2 b1 b0

a1 a0 0

0 a1 a0


 ∈ Hom(S2 V ∗,C ⊕ V ∗) (9.18)

One finds (where det D = Res(A1, B2), cf. section A.1 and I.1)

det ι1 = −410
(

det D3

)11
Q11 (9.19)

Let us discuss the pair

l(−F ) = OE(9s − F ) (9.20)

l̄(−F ) = OE(3s − 0F ) (9.21)

from the point of view of the reduction philosophy described in section 8.1. Concerning

l̄(−F ) we are here in the exceptional case ᾱ = n, β̄ = 0; so the equality condition leads to

the r-fix r = 4 from (8.4) and the discussion after (8.9) shows that, although the λ = 3/2

analogue of l(−F ) would have given l(−F ) = l̄(−F )⊗2, here λ ≥ 5/2 is required.

Now the long exact sequence for l̄

0 −→ H0
(
E ,OE (3s)

)
ρ

−→ H0
(
c,OE (3s)|c

)

δ
−→ H1

(
E ,OE (−4F )

)
ῑ1−→ H1

(
E ,OE (3s)

)
(9.22)
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gives ker ῑ1 ∼= H0(c,OE (3s)|c)/ρH0(E ,OE (3s)). So generically, for f := det ῑ1 6= 0, one has

h0(c,OE (3s)|c) = 1 from the section given by z. The necessary condition (8.1) for precise

reduction p deg l̄(−F )|c ≤ deg l(−F )|c gives p = 1 or 2; we consider here the case p = 2.

Then the bundle F̃ = Oc(D− 2D̄) from section 8, which needs to have a nontrivial section

to carry through the reduction procedure, is the bundle Λ|c = OE (3s−F )|c, cf. (3.16) (this

is also in line with the remarks after (8.9)); this flat bundle has h0(c,Λ|c) either 0 or 1. So,

if both, l̄(−F )|c = OE(3s)|c and Λ|c = OE (3s − F )|c, have a nontrivial section (the first

line bundle has z) then so does l(−F )|c. So (cf. (4.36))

fΛ |Pfaff (9.23)

To find the result f |Pfaff we now show that here actually f = fΛ.

First we argue for fΛ|f . Now, with (3.14), one has

h0(c,OE (3s)|c) = 3 − 6 + h0(c,OE (3F )|c) =: −3 + P (9.24)

h0(c,OE (3s − F )|c) = 0 − 6 + h0(c,OE (4F )|c) =: −6 + Q (9.25)

such that always P ≥ 3, Q ≥ 6. Generically one has P = 4, from the section z; note that

P = h0(c,OE (3F )|c) ≥ h0(E ,OE (3F )) = h0(b,Ob(3)) = 4. As remarked above actually

Q = 6 or 7. By (4.36) the latter is sufficient for reduction (giving (9.23)): Q = 7 ⇐⇒

h0(c,Λ|c) ≥ 1 ⇐⇒ Λ|c ∼= Oc ⇐⇒ fΛ = 0 =⇒ l(−f)|c ∼= OE(2F )|c. Note that Q ≥ 7 =⇒

P ≥ 5 as then O(3s)|c ∼= O(F )|c with the two sections π∗
cu and π∗

cv; so one gets another

(linearly independent) section z′ of OE (3s)|c, such that

fΛ | f (9.26)

Now we argue for f |fΛ: the generic result s|c = {p0, t0} , Ft0 |c = ct0 = {p0 + p+ + p−, t0}

(with A1(t0) = 0, cf. (3.20)) changes at the locus f = det ῑ1 = detD3 = Res(A1, B2) = 0

(where B2(t0) = 0): p0 becomes a three-fold point of ct0 . So one has in ME(c)

f = 0 ⇐⇒ (z)|c = 3s|c = {3p0, t0} = Ft0 |c (9.27)

Therefore f | fΛ and one gets here that actually even f = fΛ and so f |Pfaff by (9.23).

A The polynomial factors of the examples in detail

After restricting from the twodimensional base B to the rational curve b ⊂ B (with its own

homogeneous coordinates u and v) the defining equation for the spectral curve c (of class

ns + rF , cf. section 3.2) in the elliptic surface E over b is

w := Cr(u, v)z + Br−2χ(u, v)x + Ar−3χ(u, v)y = 0 (A.1)

Here the subscripts denote the degrees of the homogeneous polynomials and for the cases

of B = Fk (as for the examples in the table of section 1.1) one has χ = k−2, cf. section 3.1;

x, y, z are, of course, the usual Weierstrass coordinates for the elliptic fibre, cf. section 2.1.
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A.1 Detailed consideration of example 1

Here the spectral curve has the equation (with Dm =
∑m

i=0 diu
ivm−i for D = A,B,C)

w = C4z + B2x + A1y = 0 (A.2)

and the experimental result is, in more detail, the following

Pfaff = −410 D11
3 Q11 (A.3)

where the factors have the following meaning: D3 is defined by

D3 = b2a
2
0 − b1a1a0 + b0a

2
1 (A.4)

which is of course the following resultant (cf. appendix I)

D3 := Res(B2, A1) = det




b2 b1 b0

a1 a0 0

0 a1 a0


 (A.5)

Q11: The Giant. The structure of the second factor is more involved, it has the following

132 terms

Q11 = −2a6
1b0b

3
1c0 + 2a0a

5
1b

4
1c0 + 4a6

1b
2
0b1b2c0 + 4a0a

5
1b0b

2
1b2c0 − 10a2

0a
4
1b

3
1b2c0

−8a0a
5
1b

2
0b

2
2c0 + 20a3

0a
3
1b

2
1b

2
2c0 − 20a4

0a
2
1b1b

3
2c0 + 8a5

0a1b
4
2c0 + 48a8

1b1c
2
0

−96a0a
7
1b2c

2
0 + 2a6

1b
2
0b

2
1c1 − 2a0a

5
1b0b

3
1c1 − 2a6

1b
3
0b2c1 − 6a0a

5
1b

2
0b1b2c1

+10a2
0a

4
1b0b

2
1b2c1 + 10a2

0a
4
1b

2
0b

2
2c1 − 20a3

0a
3
1b0b1b

2
2c1 + 10a4

0a
2
1b0b

3
2c1 + 2a5

0a1b1b
3
2c1

−2a6
0b

4
2c1 − 24a8

1b0c0c1 − 72a0a
7
1b1c0c1 + 168a2

0a
6
1b2c0c1 + 24a0a

7
1b0c

2
1

+24a2
0a

6
1b1c

2
1 − 72a3

0a
5
1b2c

2
1 − 2a6

1b
3
0b1c2 + 2a0a

5
1b

2
0b

2
1c2 + 8a0a

5
1b

3
0b2c2

−10a2
0a

4
1b

2
0b1b2c2 + 10a4

0a
2
1b0b1b

2
2c2 − 2a5

0a1b
2
1b

2
2c2 − 8a5

0a1b0b
3
2c2 + 2a6

0b1b
3
2c2

+48a0a
7
1b0c0c2 + 48a2

0a
6
1b1c0c2 − 144a3

0a
5
1b2c0c2 − 72a2

0a
6
1b0c1c2 − 24a3

0a
5
1b1c1c2

+120a4
0a

4
1b2c1c2 + 48a3

0a
5
1b0c

2
2 − 48a5

0a
3
1b2c

2
2 + 2a6

1b
4
0c3 − 2a0a

5
1b

3
0b1c3

−10a2
0a

4
1b

3
0b2c3 + 20a3

0a
3
1b

2
0b1b2c3 − 10a4

0a
2
1b0b

2
1b2c3 + 2a5

0a1b
3
1b2c3 − 10a4

0a
2
1b

2
0b

2
2c3

+6a5
0a1b0b1b

2
2c3 − 2a6

0b
2
1b

2
2c3 + 2a6

0b0b
3
2c3 − 72a2

0a
6
1b0c0c3 − 24a3

0a
5
1b1c0c3

+120a4
0a

4
1b2c0c3 + 96a3

0a
5
1b0c1c3 − 96a5

0a
3
1b2c1c3 − 120a4

0a
4
1b0c2c3 + 24a5

0a
3
1b1c2c3

+72a6
0a

2
1b2c2c3 + 72a5

0a
3
1b0c

2
3 − 24a6

0a
2
1b1c

2
3 − 24a7

0a1b2c
2
3 − 8a0a

5
1b

4
0c4

+20a2
0a

4
1b

3
0b1c4 − 20a3

0a
3
1b

2
0b

2
1c4 + 10a4

0a
2
1b0b

3
1c4 − 2a5

0a1b
4
1c4 − 4a5

0a1b0b
2
1b2c4

+2a6
0b

3
1b2c4 + 8a5

0a1b
2
0b

2
2c4 − 4a6

0b0b1b
2
2c4 + 96a3

0a
5
1b0c0c4 − 96a5

0a
3
1b2c0c4

−120a4
0a

4
1b0c1c4 + 24a5

0a
3
1b1c1c4 + 72a6

0a
2
1b2c1c4 + 144a5

0a
3
1b0c2c4 − 48a6

0a
2
1b1c2c4

−48a7
0a1b2c2c4 − 168a6

0a
2
1b0c3c4 + 72a7

0a1b1c3c4 + 24a8
0b2c3c4 + 96a7

0a1b0c
2
4

−48a8
0b1c

2
4 − 2a8

1b
2
0b1g0 + 4a0a

7
1b0b

2
1g0 − 2a2

0a
6
1b

3
1g0 + 4a0a

7
1b

2
0b2g0

−12a2
0a

6
1b0b1b2g0 + 8a3

0a
5
1b

2
1b2g0 + 8a3

0a
5
1b0b

2
2g0 − 10a4

0a
4
1b1b

2
2g0 + 4a5

0a
3
1b

3
2g0

+a8
1b

3
0g1 − a0a

7
1b

2
0b1g1 − a2

0a
6
1b0b

2
1g1 + a3

0a
5
1b

3
1g1 − a2

0a
6
1b

2
0b2g1
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+6a3
0a

5
1b0b1b2g1 − 5a4

0a
4
1b

2
1b2g1 − 5a4

0a
4
1b0b

2
2g1 + 7a5

0a
3
1b1b

2
2g1 − 3a6

0a
2
1b

3
2g1

−2a0a
7
1b

3
0g2 + 4a2

0a
6
1b

2
0b1g2 − 2a3

0a
5
1b0b

2
1g2 − 2a3

0a
5
1b

2
0b2g2 + 2a5

0a
3
1b

2
1b2g2

+2a5
0a

3
1b0b

2
2g2 − 4a6

0a
2
1b1b

2
2g2 + 2a7

0a1b
3
2g2 + 3a2

0a
6
1b

3
0g3 − 7a3

0a
5
1b

2
0b1g3

+5a4
0a

4
1b0b

2
1g3 − a5

0a
3
1b

3
1g3 + 5a4

0a
4
1b

2
0b2g3 − 6a5

0a
3
1b0b1b2g3 + a6

0a
2
1b

2
1b2g3

+a6
0a

2
1b0b

2
2g3 + a7

0a1b1b
2
2g3 − a8

0b
3
2g3 − 4a3

0a
5
1b

3
0g4 + 10a4

0a
4
1b

2
0b1g4

−8a5
0a

3
1b0b

2
1g4 + 2a6

0a
2
1b

3
1g4 − 8a5

0a
3
1b

2
0b2g4 + 12a6

0a
2
1b0b1b2g4 − 4a7

0a1b
2
1b2g4

−4a7
0a1b0b

2
2g4 + 2a8

0b1b
2
2g4 (A.6)

The Giant is friendly. The expression for Q11 looks unwieldily. However medita-

tion reveals21

Q11 = −D1 + D2 + D3 (A.7)

(cf. appendix A.4) where one has the individual terms (with zy2 = 4x3−G4xz2−G6z
3 the

elliptic fibre over b; thus here a dependence on the complex structure moduli of X enters)

type ”(ga)b3a7” D1 = D2
3 ·

R(G4, B
2
2 , A2

1)

D3
(A.8)

type ”c2ba8” D2 = 24D5 ·
R(C4, B

2
2 , A2

1)

D3
(A.9)

type ”cb4a6” D3 = 2D3 · R(C4, A
4
1, B2) (A.10)

Here the meaning of the factors is the following: D5 is defined by

D5 =

4∑

i=0

(−1)icia
i
0a

4−i
1 (A.11)

which is of course the following resultant

D5 := Res(C4, A1) = det




c4 c3 c2 c1 c0

a1 a0 0 0 0

0 a1 a0 0 0

0 0 a1 a0 0

0 0 0 a1 a0




(A.12)

The other terms are the following ’multi-resultants’

R(C4, B
2
2 , A2

1) = det




c4 c3 c2 c1 c0

b2
2 2b2b1 2b2b0 + b2

1 2b1b0 b2
0

a2
1 2a1a0 a2

0 0 0

0 a2
1 2a1a0 a2

0 0

0 0 a2
1 2a1a0 a2

0




(A.13)

21As a minor difference we find in contrast to [8] a minus-sign in front of D1 (although not an overall

sign this is tunable by the sign of G4) and get (A.3) (with a prefactor 43) with (A.7) by using elements

z2x, z2y, zx2, zxy, x3, x2y, xy2, y3 for the H1(E ,O(9s − F )) decomposition, cf. also appendix G; note that

in line with the treatment for the f -factor would actually be a representation as one determinant.
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and correspondingly for G4; realise that this contains actually a D3-factor ! Finally

R(C4, A
4
1, B2) = − det




c4 c3 c2 c1 c0

b2 b1 b0 0 0

0 b2 b1 b0 0

0 0 b2 b1 b0

a4
1 4a3

1a0 6a2
1a

2
0 4a1a

3
0 a4

0




(A.14)

A.2 Detailed consideration of example 2

The spectral curve equation is w = C5z + B3x + A2y = 0 and the experimental result is

Pfaff = (DII
5 )4 (A.15)

where

DII
5 = a3

2b
2
0 − a1a

2
2b0b1 + a0a

2
2b

2
1 + a2

1a2b0b2 − 2a0a
2
2b0b2 − a0a1a2b1b2 + a2

0a2b
2
2

−a3
1b0b3 + 3a0a1a2b0b3 + a0a

2
1b1b3 − 2a2

0a2b1b3 − a2
0a1b2b3 + a3

0b
2
3 (A.16)

which is the following resultant

DII
5 = R(B3, A2) = det




b3 b2 b1 b0 0

0 b3 b2 b1 b0

a2 a1 a0 0 0

0 a2 a1 a0 0

0 0 a2 a1 a0




(A.17)

A.3 Detailed consideration of example 4

The spectral curve equation is w = C2z + B2x + A2y = 0 and the experimental result is

Pfaff = (DIV
3 )4 (A.18)

where

DIV
3 = c2b1a0 − c2b0a1 + c1b0a2 − c1b2a0 + c0b2a1 − c0b1a2 (A.19)

which is the following ’multi-resultant’

DIV
3 = R(C2, B2, A2) = det




c2 c1 c0

b2 b1 b0

a2 a1 a0


 (A.20)

A.4 The decomposition of the Giant factor Q11

To follow in greater detail the process how the decomposition of Q11 arises note that in the

expression for Q11 three types of terms occur: first those with gi (and with no ci), second
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those with cicj and third those with ci. More precisely the first group of 46 terms has the

type ”(ga)b3a7”

D1 = g0a0

(
10a2

1b
2
1b2 + 10b2

2(a
2
1b0 − 2a0a1b1 + a2

0b2)
)
a2

0a
3
1

+(g0a1 + g1a0)
(
− 2a5

1b
2
0b1 − 2a2

0a
3
1b

3
1 − 12a2

0a
3
1b0b1b2 + 10a4

0a1b1b
2
2 − 6a5

0b
3
2

+4a0a
4
1b0(b

2
1 + b0b2) − 2a3

0a
2
1b2(b

2
1 + b0b2)

)
a2

1

+(g2a0 + g1a1)
(
a6

1b
3
0 + a0a

5
1b

2
0b1 + 3a3

0a
3
1b

3
1 + 18a3

0a
3
1b0b1b2 − 3a5

0a1b1b
2
2

+3a6
0b

3
2 − 5a2

0a
4
1b0(b

2
1 + b0b2) − 3a4

0a
2
1b2(b

2
1 + b0b2)

)
a1

+(g3a0 + g2a1)
(
− 3a6

1b
3
0 + 3a0a

5
1b

2
0b1 − 3a3

0a
3
1b

3
1 − 18a3

0a
3
1b0b1b2 − a5

0a1b1b
2
2

−a6
0b

3
2 + (3a2

0a
4
1b0 + 5a4

0a
2
1b2)(b

2
1 + b0b2)

)
a0

+(g4a0 + g3a1)
(
6a5

1b
3
0 − 10a0a

4
1b

2
0b1 + 2a3

0a
2
1b

3
1 + 12a3

0a
2
1b0b1b2 + 2a5

0b1b
2
2

+2a2
0a

3
1b0(b

2
1 + b0b2) − 4a4

0a1b2(b
2
1 + b0b2)

)
a2

0

+g4a1

(
− 10a2

0b0b
2
1 − 10b2

0(a
2
1b0 − 2a0a1b1 + a2

0b2)
)
a3

0a
2
1 (A.21)

(with terms already regrouped according to the coefficients not of G4 but of G4A1).

The second group of 40 terms has the type ”c2ba8”

D2 = 24

[
c2
0(−2a2

1b1 + 4a0a1b2)a
6
1 + c0c1(a

2
1b0 + 3a0a1b1 − 7a2

0b2)a
6
1

+(c2
1 + 2c0c2)(−a2

1b0 − a0a1b1 + 3a2
0b2)a0a

5
1

+(c1c2 + c0c3)(3a
2
1b0 + a0a1b1 − 5a2

0b2)a
2
0a

4
1

+(c2
2 + 2c1c3 + 2c0c4)(−2a2

1b0 + 2a2
0b2)a

3
0a

3
1

+(c2c3 + c1c4)(5a
2
1b0 − a0a1b1 − 3a2

0b2)a
4
0a

2
1

+(c2
3 + 2c2c4)(−3a2

1b0 + a0a1b1 + a2
0b2)a

5
0a1

+c3c4(7a
2
1b0 − 3a0a1b1 − a2

0b2)a
6
0 + c2

4(−4a0a1b0 + 2a2
0b1)a

6
0

]
(A.22)

Finally the last group of 46 terms has the type ”cb4a6”

D3 = c0

(
2a6

1b0b
3
1 − 2a0a

5
1b

4
1 − 4a6

1b
2
0b1b2 − 4a0a

5
1b0b

2
1b2 + 10a2

0a
4
1b

3
1b2

+8a0a
5
1b

2
0b

2
2 − 20a3

0a
3
1b

2
1b

2
2 + 20a4

0a
2
1b1b

3
2 − 8a5

0a1b
4
2

)

+c1

(
− 2a6

1b
2
0b

2
1 + 2a0a

5
1b0b

3
1 + 2a6

1b
3
0b2 + 6a0a

5
1b

2
0b1b2 − 10a2

0a
4
1b0b

2
1b2

−10a2
0a

4
1b

2
0b

2
2 + 20a3

0a
3
1b0b1b

2
2 − 10a4

0a
2
1b0b

3
2 − 2a5

0a1b1b
3
2 + 2a6

0b
4
2

)

+c2

(
2a6

1b
3
0b1 − 2a0a

5
1b

2
0b

2
1 − 8a0a

5
1b

3
0b2 + 10a2

0a
4
1b

2
0b1b2 − 10a4

0a
2
1b0b1b

2
2

+2a5
0a1b

2
1b

2
2 + 8a5

0a1b0b
3
2 − 2a6

0b1b
3
2

)
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+c3

(
− 2a6

1b
4
0 + 2a0a

5
1b

3
0b1 + 10a2

0a
4
1b

3
0b2 − 20a3

0a
3
1b

2
0b1b2 + 10a4

0a
2
1b0b

2
1b2

−2a5
0a1b

3
1b2 + 10a4

0a
2
1b

2
0b

2
2 − 6a5

0a1b0b1b
2
2 + 2a6

0b
2
1b

2
2 − 2a6

0b0b
3
2

)

+c4

(
8a0a

5
1b

4
0 − 20a2

0a
4
1b

3
0b1 + 20a3

0a
3
1b

2
0b

2
1 − 10a4

0a
2
1b0b

3
1 + 2a5

0a1b
4
1

+4a5
0a1b0b

2
1b2 − 2a6

0b
3
1b2 − 8a5

0a1b
2
0b

2
2 + 4a6

0b0b1b
2
2

)
(A.23)

From D1 and D2 one can split off a factor D2
3 and 24D5, respectively, and gets (for D2,

say) a complicated polynomial (with the coefficients ci of C4 replaced by the coefficients of

G4 for D1)

P = a4
1(−2b1c0 + b0c1) − a3

1a0(−4b2c0 − b1c1 + 2b0c2) + a2
1a

2
0(−3b2c1 + 3b0c3)

−a1a
3
0(−2b2c2 + b1c3 + 4b0c4) + a4

0(−b2c3 + 2b1c4) (A.24)

The structural meaning of this expression is revealed by the following identity

det




c4 c3 c2 c1 c0

b2
2 2b2b1 2b2b0 + b2

1 2b1b0 b2
0

a2
1 2a1a0 a2

0 0 0

0 a2
1 2a1a0 a2

0 0

0 0 a2
1 2a1a0 a2

0




= P · det




b2 b1 b0

a1 a0 0

0 a1 a0


 (A.25)

(cf. section A.1). Similarly D3 is 2 times the product of two determinants, cf. (A.10).

B Rational Curves P in X

Which (smooth) rational curves P , suitable as support for the world-sheet instanton, exist

in X? As we want to bring to bear the elliptically fibered structure of X and the spectral

nature of V we concentrate on horizontal curves: if pσ+aP F denotes the cohomology class

then P is said to lie ’horizontally’ (embedded in B via σ) if aP = 0. We first search for

such rational base curves; then we treat the question of isolatedness.

B.1 The different rational base surfaces B

The Calabi-Yau threefold X has the following possible rational surfaces as bases B: a

Hirzebruch surface Fk with k = 0, 1, 2 (or blow-ups of it); or B is P2 or blow-ups of it, i.e.

one of the del Pezzo surfaces dPk with k ≤ 8; finally the Enriques surface is possible.

The surface Fk is a P1-fibration over a base P1 denoted by b (the fibre is denoted

by f ; if no confusion arises b and f will denote also the cohomology classes). One finds

c1(Fk) = 2b + (2 + k)f . b of b2 = −k is a section of the fibration; there is another section

(”at infinity”) of class b∞ = b + kf of self-intersection +k. The Kaehler cone (the very

ample classes) equals the positive (ample) classes and is given (cf. footnote 22) by the

numerically effective classes xb + yf with x > 0, y > kx. An irreducible non-singular curve

exists in a class xb + yf exactly if the class lies in the mentioned cone or is one of the

elements b, f or ab∞ (with a > 0) on the boundary of the cone; these classes together with
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their positive linear combinations span the effective cone (x, y ≥ 0). c1 is positive for F0

and F1, for F2 it lies on the boundary of the positive cone.

We will concentrate on the case B = Fk for illustration; in P2 one has (non-isolated)

rational curves given by a line or a quadric (of classes l and 2l); on a dPk one has among

various further curves the exceptional P1’s (from the blow-up) of self-intersection −1.

B.2 Horizontal rational curves

For B a Hirzebruch surfaces Fk (k = 0, 1, 2) let us find the possible rational instanton

curves on B besides the three immediate candidates P = b, b∞ (of class b + kf) and f .

The cohomology class P = xb+ yf is represented by an irreducible smooth curve for22

P = b, f, a b∞ (with a > 0 and k > 0) or P > 0, i.e. P ample (positive) which comes down

to P · f = x > 0 and P · b = y− kx > 0. So, except for f and b, one has x > 0, y > 0 which

we will assume from now on. Now the numerical rationality condition

2
!
= c1 · P − P 2 = 2(x + y) − kx + kx2 − 2xy (B.1)

leads to the following possibilities:

F0 : P = b + yf or P = xb + f

F1 : P = b + yf or P = 2(y − 1)b + yf

F2 : P = b + yf or P = (y − 1)b + yf .

Combining this finding with the requirement that P (if not equal to b or f) is either of the

form a(b + kf) or P > 0 the following possibilities remain in total

P = b , f , b + yf (y ≥ k) (B.2)

together with the mirrored case xb + f on F0 and the exceptional P = 2b + 2f on F1.

B.3 The question of isolatedness

Now let us study which of the rational curves found so far are furthermore isolated. To

make the discussion transparent we recall first the relevant facts in general (cf. also [5]).

For this we decompose the problem in steps: we first study in the next two subsections

the rigidity question for a base curve P with respect to the two surfaces in which P is

contained, that is for B and E = π−1(P ). Finally we point to the decomposed nature of

the problem. The upshot is that the base curve b in F1 remains (as the corresponding

other rational blow-up curves of self-intersection (−1) in a dPk base).

B.3.1 The deformations of P in the rational base surface B

We have a ’local’ information def loc
B (P ) := h0(P,NBP ) about deformations of P in B as

well as a ’global’ one defglobB (P ) := defB(P ) := h0(B,O(P )) − 1. Using Riemann-Roch

2∑

i=0

(−1)ihi(B,OB(P )) = h0(P,NBP ) − h1(P,NBP ) + 1 (B.3)

22Cf. R. Hartshorne, Algebraic Geometry, Springer Verlag (1977).
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(with χ(B,O) = 1 from Noether’s theorem for our rational B) we get

defB(P ) = h0(P,NBP ) − h1(P,NBP ) + s − h2(B,OB(P )) (B.4)

(with the superabundance s = h1(B,OB(P ))) with the local terms

h0(P,NBP ) − h1(P,NBP ) =
1

2
χ(P ) + degNBP =

Pc1 + P 2

2
(B.5)

Let us investigate the two higher cohomological corrections s and h2(B,OB(P )) in (B.4).

For any curve P on a rational surface B (like a Hirzebruch surface Fn or a del Pezzo surface

dPk) one has h2(B,OB(P )) = 0 which can be seen from the exact sequence 0 → OB →

OB(P ) → OP (P ) → 0 with associated long exact sequence (where B being rational one

has pg(B) = h2(B,OB) = 0 and q(B) = h1(B,OB) = 0)

0 → h0(B,OB) → h0(B,OB(P )) → h0(P,OP (P ))

→ h1(B,OB) → h1(B,OB(P )) → h1(P,OP (P ))

→ h2(B,OB) → h2(B,OB(P )) → 0 (B.6)

so h2(B,OB(P )) = 0 and h1(B,OB(P )) = h1(P,OP (P )) in (B.4), giving

B rational =⇒ defglobB (P ) = def loc
B (P ) (B.7)

The mentioned middle terms in (B.4) not only cancel but vanish individually if h0(P,KP −

NBP ) = 0 which happens if 0 > deg(KP − NBP ) = P (KB + P ) − P 2 = PKB which is

guaranteed if −KB is ample, as for B = Fn with23 n = 0, 1 and dPk (k 6= 9); in general

P · c1 > 0 =⇒ defB(P ) = h0(P,NBP ) =
Pc1 + P 2

2
(B.8)

Isolated rational curves in Fk. We restrict ourselves to isolated instantons; so for

p = b, say, we restrict us to F1,F2 where b2 < 0 enforces isolatedness24 in Fk.25 Let

us complete the discussion with the case P = b + yf where y > k: then the number of

deformations of the very ample P is

defFk
(P ) = 2y − k + 1 (B.9)

(here was y > k but P = b∞ of y = k is also covered: h0(b∞, NFk
b∞) = h0

(
b∞,Ob∞(k)

)
=

k + 1). For f obviously defFnf = 1 (also from (B.8)). Finally (cf. (B.2)) P = 2b + 2f on

F1 has defB(P ) = 5 by (B.8). Thus only b in F1 remains (similarly the blow-up curves of

self-intersection (−1) in dPk).

23For F2 of c1 = 2b∞ the Kodaira vanishing theorem gives s = h1(B,O(P )) = h1(B,O(K − P )) = 0 if

−K + P = (x + 2)b + (y + 4)f is ample, i.e. for y > 2x, x > −2, so clearly for all ample P = xb + yf (where

even x > 0) and for f ; finally kb+ · c1(F2) = 4k > 0 making (B.8) again applicable.
24Having negative self-intersection b cannot move; more formally defB(b) = 0 on F1 by (B.8), and

defB(P ) = Pc1+P2

2
+ h1(P, NBP ) = −1 + h0(P, KP − NBP ) = 0 on F2 from (B.5) and NBb = Kb.

25The same follows in X for k 6= 2 (for k = 2 one has Eb = b×F showing a deformation), cf. section B.3.2.
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B.3.2 The deformations of P in the vertical elliptic surface E

The Kodaira formula identifies the canonical bundle of E as a pull-back class KE = π∗
EKP +

χ(E ,OE )F . So χ(E ,OE ) = 1
12e(E). But e(E) = 12c1 · P as the elliptic fibration has

discriminant 12c1 so that χ(E ,OE ) = c1 · P . Alternatively one can see from adjunction

c(E) = c(P )
(1 + r)(1 + r + 2c1)(1 + r + 3c1)

1 + 3r + 6c1
(B.10)

that

c1(E) =
(
e(P ) − c1 · P

)
F , e(E) = 12c1 · P (B.11)

Note that the number c1 · P has the following important interpretation: as c1(E) is a pull-

back class, i.e. a number of fibers, one has from (B.11) that PE · c1(E) = eP − c1 · PB

(we write PE when we wish to emphasize that P is considered as a curve in E); so with

adjunction −eP = P 2
E − PE · c1(E) inside E one gets that the self-intersection of PE in E is

P 2
E = −c1 · PB = −χ(E ,OE ). So with deg(NE PE ) = P 2

E one has the criterion

P · c1 > 0 =⇒ def loc
E PE = 0 (B.12)

So, assuming P ·c1 > 0 as in (B.8), we have no further deformations in the vertical direction

except for the case P = b of b · c1 = 0 in B = F2: there E = b × F shows a deformation in

X (while one has no deformation in the base B, cf. section B.3.1).

Examples. The cases c1 ·P = 0, 1, 2 lead to E = b×F, dP9,K3 of e(E) = 0, 12, 24. These

E occur over P = b in B = Fk with k = 2, 1, 0 (cf. section 3.1): first, the ruled surface

b × F over F , being one of the two exceptional divisors (the other is the base F2 itself) of

the STU Calabi-Yau P1,1,2,8,12(24); secondly, the rational elliptic dP9 surface which occurs

also over any exceptional curve (b2 = −1, b · c1 = 1; rationality and the second property

imply the first) in a dPk base; finally for F0 one gets the well-known K3 fibers, which occur

also over each fiber of a Fk base (c1 · P = 2 by adjunction).

B.3.3 The deformations of P in X

The total deformation space can be considered fibered together out of the pieces investi-

gated so far. Concerning def loc
X P consider

0 → NB P → NX P → NX B|P → 0 (B.13)

the last term being NE P . To get def loc
X P = def loc

B P one has to show that

H0(P,NX B|P ) = 0, i.e. that there are no further deformations of P in E . This will

hold if deg NE P = P 2
E = −χ < 0, cf. (B.12).

C Some Lemmata

C.1 Lemma 1

We follow the notation in section 4 where one finds that b contributes iff V |b is trivial

Wb 6= 0 ⇐⇒ V |b =

n⊕

i=1

Ob (C.1)
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A corresponding framing would give n linearly independent global sections such that

Wb 6= 0 =⇒ h0(b, V |b) = n (C.2)

This is also directly a consequence of Wb 6= 0 ⇐⇒ h0
(
b, V |b(−1)

)
= 0 in (4.1). For this

note that the short exact sequence

0 −→ l(−F )|c −→ l|c −→ Cn −→ 0 (C.3)

and its associated long exact cohomology sequence

0 −→ H0(c, l(−F )|c) −→ H0(c, l|c) −→ Cn −→ H1(c, l(−F )|c) −→ H1(c, l|c) −→ 0 (C.4)

show that h0
(
b, V |b(−1)

)
= h0

(
c, l(−F )|c

)
= 0 =⇒ h0(b, V |b) = h0(c, l|c) = n as one has

h0
(
c, l(−F )|c

)
= h1

(
c, l(−F )|c

)
(C.5)

This follows either, arguing downstairs on b, using hi
(
c, l(−F )|c

)
= hi

(
b, V |b(−1)

)
from

h0
(
b, V |b(−1)

)
− h1

(
b, V |b(−1)

)
=

∫

b
c1

(
V |b(−1)

)
+

c1(b)

2
=

∫

b
c1(V )|b = 0 (C.6)

or, with (3.26), also directly upstairs on c as one has with (3.26)

h0
(
c, l(−F )|c

)
− h1

(
c, l(−F )|c

)
=

1

2
deg Kc +

1

2
deg K−1

c = 0 (C.7)

C.2 Lemma 2

As πE is a projection one has π−1
E (b) = E and so H0

(
E ,OE (αs+βF )

)
= H0

(
b, πE∗OE(αs+

βF )
)
. From the Leray spectral sequence for the elliptically fibered surface E one has

0 −→ H1
(
b, π∗OE(αs)

)
−→ H1

(
E ,OE (αs)

)
−→ H0

(
b,R1π∗OE(αs)

)
(C.8)

−→ 0 −→ H2
(
E ,OE (αs)

)
−→ H1

(
b,R1π∗OE (αs)

)
−→ 0

The case α > 0. For α > 0 one has (recall that L|b = K−1
B |b = Ob(χ))

π∗OE(αs + βF ) = Ob(β) ⊕
α⊕

i=2

Ob

(
β − iχ

)
(C.9)

R1π∗OE(αs + βF ) = 0 (C.10)

and the Leray spectral sequence gives H2
(
E ,OE (αs + βF )

)
= 0 and

H1
(
E ,OE (αs + βF )

)
= H1

(
b, πE∗OE (αs + βF )

)
(C.11)

One finds that h0
(
E ,OE (αs + βF )

)
vanishes, if α > 0, just for negative β

α > 0 : h0
(
E ,OE (αs + βF )

)
= h0

(
b, πE∗OE(αs + βF )

)
= 0 ⇐⇒ β < 0 (C.12)
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More precisely note that (where {m} := m + 1 = h0(b,Ob(m)) for m ≥ 0 or else zero)

h0
(
E ,OE (αs + βF )

)
= {β} +

α∑

i=2

{β − iχ} → α(β + 1) −

(
α(α + 1)

2
− 1

)
χ (C.13)

h1
(
E ,OE (αs + βF )

)
= {−β − 2} +

α∑

i=2

{−β − 2 + iχ} → −α(β + 1) +

(
α(α + 1)

2
− 1

)
χ

(C.14)

Here the final evaluations for β or −β sufficiently big, i.e. β − αχ ≥ 0 or −β − 2 ≥ 0;

actually (C.14) still holds for β = −1.

The case α = 0. Next, in the case α = 0 one has π∗OE = Ob and R1π∗OE = KB |b =

Ob(−χ). One finds

H1(b,R1π∗OE(0s + βF )) ∼= H1(b,Ob(β − χ)) ∼= H0(b,Ob(χ − β − 2))∗ (C.15)

H0(b,R1π∗OE(0s + βF )) ∼= H0(b,Ob(β − χ)) (C.16)

The case α < 0. Finally in the case α < 0 one has

π∗OE(αs) = 0 (C.17)(
R1π∗OE(αs)

)∗
= π∗

(
OE (−αs) ⊗ (KE ⊗ K−1

b )
)

= π∗OE(−αs) ⊗ K−1
B |b (C.18)

and finds

H1

(
b,R1π∗OE (αs + βF )

)
= H0

(
b,

(
Ob ⊕

−α⊕

i=2

Ob(−iχ)

)
⊗Ob(χ − β − 2)

)∗

(C.19)

H0

(
b,R1π∗OE (αs + βF )

)
= H0

(
b,

(
Ob ⊕

−α⊕

i=2

Ob(iχ)

)
⊗Ob(β − χ)

)
(C.20)

To summarize: we get that H1
(
b,R1π∗OE (αs + βF )

)
vanishes26 and that

H0(b,R1π∗OE (αs + βF )) is vanishing27 in the following cases

H2(E ,OE (αs + βF )) = 0 ⇐=

{
β arbitrary for α > 0

β > χ − 2 for α ≤ 0
(C.21)

H1(E ,OE (αs + βF )) ∼= H1(b, π∗OE (αs + βF )) ⇐=

{
β arbitrary for α > 0

β < (α + 1)χ for α ≤ 0
(C.22)

Example. For λ = 1/2 one has also to consider the case p = n(λ − 1
2) = α − n = 0

by (4.30), so χ − 2 < q = β − r < χ from the conditions (C.21), (C.22) for OE(ps + qF );

but the resulting consequence β − r = −r + 1+n
2 χ − 1 ≥ χ − 1 (from the lower bound),

i.e. r − n−1
2 χ − 1 < 0 contradicts (3.11) or (3.15); so then H2(E ,OE (αs + βF )) 6= 0.

26Such that then one will have, from (C.8), still H2(E ,OE(αs)) = 0, leaving in the long exact se-

quence (4.11) again only the three H0- and the three H1-terms
27such that (C.11) holds.
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C.3 Lemma 3 (cf. section 4.3, eq. (4.26))

A sufficient criterion for the condition in (4.12) to hold (necessary for Wb 6= 0) is β < 0

h0
(
E , l(−F − c)

)
= h0

(
E , l(−F )

)
=⇒
⇐= β < 0 (C.23)

as then both dimensions vanish by (4.23). The converse holds also: the dimensions can be

equal only if both vanish. So assume the lhs of (C.23) and β ≥ 0 such that

h0
(
E , l(−F )

)
= β + 1 +

α∑

i=2

{β − iχ}

h0
(
E , l(−F − c)

)
= {β − r} +

α−n∑

i=2

{β − r − iχ} , (C.24)

from l(−F ) = OE (αs + βF ) with α := n(λ + 1
2). Then one gets

α−n∑

i=2

(
{β − iχ} − {β − r − iχ}

)
+

α∑

i=α−n+1

{β − iχ} = {β − r} − (β + 1) (C.25)

(note that λ > 1/2 by our standing technical assumption (4.24), so α > n). This leads to

a contradiction: the lhs of (C.25) is always ≥ 0 as r ≥ 0 by (3.11); so β ≥ r (otherwise the

rhs would be < 0) and the rhs is −r ≤ 0, such that r = 0. But then (3.11) gives χ = 0 (i.e.

B = F2) and therefore from (4.21) the contradiction β = −1. Therefore actually β < 0

and both H0-terms on the lhs of (C.23) are zero by (C.12).

So, indeed, the necessary criterion (for Wb 6= 0) that the equality on the lhs of (C.23)

holds is equivalent to β being negative, which also means that the two H0-dimensions were

actually zero.

D An alternative method

For another method to get a 4-term exact sequence with H0(c, l(−F )|c) as kernel of a map

ρ between spaces of equal dimension (cf. after (4.16)) choose, besides the varying curve

c ⊂ E , a second fixed effective divisor c′ ⊂ E which may be reducible (some fibers, say) or

even non-reduced (some fibers coalescing); assume deg D′ > deg K
1/2
c where D′ := c′|c.

From degL = deg K
1/2
c with L = l(−F ) = OE (αs + βF ) one has (deg(Kc − L|c(D

′)) < 0)

0 −→ H0(c,L|c) −→ H0(c,L|c(D
′))

ρ
−→ H0(D′,L|c(D

′)|D′) −→ H1(c,L|c) −→ 0 (D.1)

(middle terms have equal dimension: h0(c,L|c(D
′)) = deg D′ = c′ · c = h0(D′,L|c(D

′)|D′)).

Let c′ be a set of m ≥ r − n−1
2 χ fibers. For m > −β + r − 2 + (α − 3)χ one has

0 −→ H0(E ,L(mF − c)) −→ H0(E ,L(mF )) −→ H0(c,L(mF )|c) −→ 0 (D.2)

Similarly here also the third term in (D.1) can be represented as

0 −→ ⊕m
i=1H

0(F,OFi(α − n)) −→ ⊕m
i=1H

0(F,OFi(α)) −→ ⊕m
i=1H

0(Fi|c,OFi(α)|c) −→ 0
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All of these sequences are interwoven with our original sequence after (4.16)

0

↓

0 0 → H0(c,L|c)
δ
→

↓ ↓ ↓

0 → H0(E ,L(mF − c)) → H0(E ,L(mF )) → H0(c,L(mF )|c) → 0

↓ ↓ rm ↓ ρm

0 →

m⊕

i=1

H0(Fi,OFi(α − n)) →

m⊕

i=1

H0(Fi,OFi(α)) →

m⊕

i=1

H0(Fi|c,OFi(α)|c) → 0

↓ ↓ ↓
δ
→ H1(E ,L(−c)) → H1(E ,L) → H1(c,L|c) → 0

↓ ↓ ↓

0 0 0

Here one gets again28 that Pfaff(t) = 0 ⇐⇒ det ρc′(t) = 0. As an example take m ≥ 3

in example 1: among the O(9s + yF ) with y ≥ 2 those of y ≥ 9 have all global sections

arising from (restriction from) E , cf. (D.2).

E The cases λ < −1/2

To treat also λ < −1
2 , outside the range (4.24), let λ̃ := −λ > 1

2 and note that with

l(−F ) = OE

(
n

(
λ +

1

2

)
s + βF

)
(E.1)

l̃(−F ) := OE

(
n

(
λ̃ +

1

2

)
s + β̃F

)
(E.2)

(where β = β(λ), β̃ = β(λ̃)) one gets with (C.5) and (3.26) that

h0
(
c, l(−F )|c

)
= h1

(
c, l(−F )|c

)
= h0

(
c,
(
K1/2

c ⊗Fλ

)∗
⊗ Kc

)
= h0

(
c,K1/2

c ⊗F−λ

)

= h0
(
c, l̃(−F )|c

)
(E.3)

So, by (4.9) and (E.3), the question of contribution (or not) is independent of the sign of λ.

So, following (4.9), one can work equally well with the new h0-expression for l̃, i.e., when

one wants to consider (E.1) with λ < −1
2 one applies the same arguments as before to (E.2)

assuming the necessary condition (4.12), i.e. β < 0, what leads again to a map (4.30), now

for l̃ with λ̃ > 1
2 . The map H1(E , l(−F − c)) −→ H1(E , l(−F )) becomes with Serre duality

H1(E , l(−F − c)∗ ⊗ KE )∗ −→ H1(E , l(−F )∗ ⊗ KE )∗ which is dual to

H1(E , l(−F )∗ ⊗ KE) −→ H1(E , l(−F − c)∗ ⊗ KE ) (E.4)

28The map ρm over c comes from the moduli-independent restriction map rm. The moduli-dependence can

be understood from the necessity to select representatives inside H0(E ,L(mF )) of a set of basis elements in

H0(c,L(mF )|c); for this one has to take into account the equivalences arising from embedding H0(E ,L(mF−

c)) into H0(E ,L(mF )) via multiplication with the defining polynomial wc of c.
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This amounts to the original map (4.30), now for l̃ which has λ̃ > 1/2,

H1(E , l̃(−F − c)) −→ H1(E , l̃(−F )) (E.5)

as l(−F )∗ ⊗OE(c) ⊗ KE = l̃(−F ) because l(−F ) = (KE ⊗OE(c))1/2 ⊗ Gλ|E by (3.25) and

l̃(−F ) arises from l(−F ) by going from λ to λ̃ = −λ (the argument we gave in (E.3) on

c). So, as necessary condition for contribution to the superpotential one has to consider

β(λ̃) < 0 also in the case λ < −1
2 .

Example 1: the case with λ = −5/2

Consider λ = −5/2 where β = 3r + 1−5n
2 χ−1 and l(−F ) = OE (−2ns+βF ) and apply

the usual reasoning to l̃(−F ) in (E.2) where λ̃ = +5/2 and β̃ = −β + r − 2 + χ. Assuming

the necessary condition (4.12), i.e. β̃ < 0, consider the map (E.5)

Ir : H1
(
E ,OE

(
2ns + (β̃ − r)F

))
−→ H1

(
E ,OE

(
3ns + β̃F

))
(E.6)

Concretely, consider an SU(3) bundle over B = F1 and take r = 4 such that β = 4, β̃ = −1

and l(−F ) = OE(−6s + 4F ), l̃(−F ) = OE

(
9s − F

)
. One gets a map29 (9.11) between

44-dimensional spaces (by (C.14)).

F Reduction cases with equality condition

F.1 The case ᾱ > n

Note that ᾱ ≤ 1
pα = n

p (λ + 1
2) gives here λ > p − 1

2 . Then β̄ ≤ 1
pβ gives with (6.5)

ᾱ ≥
1

p
α +

p − 1

p

n

r − nχ

(
r −

n − 1

2
χ − 1

)
(F.1)

such that

r −
n − 1

2
χ − 1 ≤ 0 (F.2)

With (3.12) one finds that χ = 0, r = 1 such that one gets with (6.5) (for λ + 1
2 ∈ pZ>1)

l(−F ) = OE

(
n

(
λ +

1

2

)
s −

(
λ +

1

2

)
F

)
(F.3)

l̄(−F ) = OE

(
n(λ + 1

2)

p
s −

λ + 1
2

p
F

)
(F.4)

29Which is dual to the map arising via Serre duality from the map H1(E ,OE(−9s + 0F )) −→

H1(E ,OE(−6s + 4F )).
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F.2 The case ᾱ = n

Note that h0(c, l̄(−F )|c) > 0 needs deg l̄(−F )|c ≥ 0; but in the case (6.18) one has

deg l̄(−F )|c = n(n−2
n−1r − (n

2 − 1)χ − 1) so we do not have to consider SU(2) bundles here.

Here ᾱ ≤ 1
pα = n

p (λ + 1
2) gives λ ≥ p − 1

2 and the β̄-bound gives with (6.8)

(
λ −

(
1

2
+

p

n − 1

))
(r − nχ) −

1

2

(
2p

n − 1
− n(p − 1) + 1

)
χ ≤ p − 1 (F.5)

Thereby one derives (after checking the sign of the prefactor) with (4.28) that one has[(
λ − (1

2 + p
n−1)

) n+1
2

λ− 1
2

− 1
2

(
2p

n−1 − n(p − 1) + 1
)]

χ ≤ p − 1 or

(
n − 2 −

1

λ − 1
2

)
χ ≤ 2

p − 1

p

n − 1

n + 1
(F.6)

For p = 1 this can be fulfilled by χ = 0 where then (F.5) gives λ ≤ 1
2

n+1
n−1 , allowing just

λ = 3
2 for n = 2, or, for even r, also λ = 1; but we need n > 2 so let us now assume

that χ ≥ 1; then, for n > 2, one can have SU(3) bundles with λ = 3
2 where one gets

2χ ≤ r − 3χ ≤ 2χ from (F.5) and (4.29) such that r = 5χ (case ♯ 2 there); or SU(4)

bundles with λ = 1 where one gets 5χ ≤ r − 4χ ≤ 5χ such that r = 9χ (case ♯ 1 there).

So let now p ≥ 2. One derives then

(n − 3)χ ≤

(
n − 2 −

1

p − 1

)
χ ≤ 2

n − 1

n + 1
(F.7)

SU(3) bundles. Here, where λ ∈ 1
2 + Z, one gets from (F.7) that p−2

p−1χ ≤ 1; we will

discuss the case p = 2 separately. So let p > 2 such that30 χ = 0 or 1; more precisely one

has from (F.6)

λ − 3
2

λ − 1
2

χ ≤
p − 1

p
(F.8)

For χ = 0, where r must be even by (6.8), one gets from (F.5) that (p
2 −1)r ≤ (λ− p+1

2 )r ≤

p − 1; so r = 2 or r = 4, p = 3; here r = 2 (case ♯ 1) leads to λ ≤ p, so λ = p − 1
2 and

case ♯1 l(−F ) = OE

(
3

(
λ +

1

2

)
s − 2λF

)
(F.9)

l̄(−F ) = OE

(
3s − 2F

)
(F.10)

whereas the r = 4, p = 3 case (case ♯ 4) leads to λ ≤ 5
2 such that λ = p − 1

2 = 5
2 and

case ♯4 l(−F ) = OE

(
9s − 9F

)
(F.11)

l̄(−F ) = OE

(
3s − 3F

)
(F.12)

30The case p = 3, χ = 2 with λ = 3/2 from (F.8) contradicts λ ≥ p − 1
2
.
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For χ = 1 one gets p − 1
2 ≤ λ ≤ p + 1

2 from (F.8), giving r ≥ 3 + 2
p−1 for λ = p − 1

2 and

r ≥ 3 + 2
p for λ = p + 1

2 by (4.28); here 1
2(r − 3) = (λ− p+1

2 )(r − 3) ≤ 1 from (F.5), leaving

only the case p = 3, λ = p − 1
2 = 5

2 and r = 5 (case ♯ 5) as r must be odd by (6.8)

case ♯5 l(−F ) = OE

(
9s − 3F

)
(F.13)

l̄(−F ) = OE

(
3s − F

)
(F.14)

Finally, for p = 2 now (F.5) says that (λ− 3
2)(r−3χ) ≤ 1, so λ = 3/2 (case ♯ 3) is a solution

(the only one31), so one has for r ≥ 5χ and r ≡ χ (mod 2) (with deg det ῑ1 = 3r−5χ
2 )

case ♯3 l(−F ) = OE (6s − (r − 5χ + 1)F ) (F.15)

l̄(−F ) = OE

(
3s −

(
r − 5χ

2
+ 1

)
F

)
(F.16)

Let us also recall the earlier mentioned p = 1 case

case ♯2 l(−F ) = OE

(
6s − F

)
(F.17)

l̄(−F ) = OE

(
3s − F

)
(F.18)

SU(4) bundles. Here one gets from (F.7) that χ = 0 or 1. Actually32 χ = 0 and one

gets, with λ− 1
2 ≥ p−1 from the remark before (F.5), that (2

3p−1)r ≤ p−1 or r ≤ 1+ p
2p−3 ,

such that p = 2, r = 3 (case ♯ 2) as 3|r by (6.8); one gets from (F.5) that λ = 3
2 and one

has (with deg det ῑ1 = 4 and deg det ι1 = 24)

case ♯2 l(−F ) = OE

(
8s − 4F

)
(F.19)

l̄(−F ) = OE

(
4s − 2F

)
(F.20)

Let us also recall the earlier mentioned p = 1 case

case ♯1 l(−F ) = OE

(
6s − F

)
(F.21)

l̄(−F ) = OE

(
4s − F

)
(F.22)

SU(n) bundles with n ≥ 5. Here one gets χ = 0 such that (p − 1 − p
n−1)r ≤ (λ −

1
2 − p

n−1)r ≤ p − 1 or (1 − 2
n−1)r ≤ (1 − 1

n−1
p

p−1)r ≤ 1; this has no solutions as (n − 1)|r

by (6.8).

So in total one gets the following lists

31For, if λ > 3/2, note that 2

λ−
1

2

χ ≤ r−3χ ≤ 1

λ−
3

2

by (4.29) such that 2
λ−

3

2

λ−
1

2

χ ≤ 1 which implies λ = 5/2

(as for λ ≥ 7/2 the coefficient of χ becomes > 1 which enforces χ = 0 where (F.5) gives the contradiction

(λ− 3
2
)r ≤ 1 as r > 0). λ = 5/2 is excluded as one gets r− 3χ ≤ 1 while χ ≤ r− 3χ by (4.29): χ = 0 giving

r = 1 and χ = 1 giving r = 4 are both excluded as (6.8) must be integral.
32For χ = 1 one gets from (F.5) that ( 2

3
p − 1)(r − 4) ≤ (λ − 1

2
− p

3
)(r − 4) ≤ − 2

3
p + 3

2
or r ≤ 3 + 3/2

2p−3
,

i.e. r = 3 as 3|r by (6.8) (also here λ ∈ Z and p = 2 by (F.7)); so (3.11) is violated.
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• SU(3) bundles

♯ χ r λ p

1 0 2 p − 1
2 > 2

2 ≥ 1 5χ 3
2 1

3 χ ≥ 5χ,≡ χ(2) 3
2 2

4 0 4 5
2 3

5 1 5 5
2 3

Here the case 1 for p = 2 is the case 3 for χ = 0, r = 2. Note that in case 3 one has

also the assumption r ≥ 5χ.

• SU(4) bundles

♯ χ r λ p

1 ≥ 1 9χ 1 1

2 0 3 3
2 2

F.3 SU(3) and SU(4) bundles with Pfaff ≡ 0

F.3.1 SU(3) bundles

According to section 7 one uses here besides the strong reduction condition pβ̄ ≤ β the

condition that (7.2) is positive

−
1

p
β ≤ −β̄ <

r − 5χ

2
+ 1 (F.23)

Furthermore the other part pᾱ ≤ α of the strong reduction condition gives (with ᾱ ≥ 3)

that p ≤ λ + 1
2 such that one gets

2

(
λ −

1

2

)
r − 2

(
3λ +

1

2

)
χ + 2 <

(
λ +

1

2

)
r − 5

(
λ +

1

2

)
χ + 2

(
λ +

1

2

)
(F.24)

or equivalently

(
λ −

3

2

)
(r − χ) < 2

(
λ −

1

2

)
(F.25)

Let us first assume that λ = 3/2. Then one gets 1
p(r − 5χ + 1) ≤ −β̄ < r−5χ

2 + 1

from (F.23); as p ≤ 2 and r−5χ ≥ 0 by (4.28) one gets p = 2 with r−5χ
2 + 1

2 ≤ −β̄ < r−5χ
2 +1;

the two ensuing cases r ≡ χ(2), where no (integral !) solution for β̄ exists, and r 6≡ χ(2)

where β̄ = −( r−5χ+1
2 ) are discussed further in section 7. We show now that no further

cases exist.

Let us therefore assume λ 6= 3/2; as n = 3 one has λ = 1
2 + m with m ∈ Z≥1, so let

now m 6= 1. From (4.28) one gets

r − χ ≥ 2
m + 1

m
χ (F.26)
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such that one gets from (F.25) that χ ≤ m2

m2−1
and therefore χ = 0 or 1.

For χ = 0 one has r < 2 m
m−1 from (F.25) such that m = 2 with r = 1, 2, 3 or m ≥ 3

with r = 1, 2; further p ≤ m + 1. The Pfaff ≡ 0 case χ = 0, r = 1 was already covered

in section 6.3.1. From 1
p(mr + 1) ≤ −β̄ < r

2 + 1 one gets for r = 2 that −β̄ = 1 (recall

β̄ < 0) such that one gets the contradiction 2m + 1 ≤ p; for r = 3,m = 2 one gets the

contradiction 1
p7 ≤ −β̄ < 5

2 (allowing no integral β̄ solution for p = 3) where p ≤ 3.

For χ = 1 one gets r − 1 < 2 m
m−1 from (F.25) contradicting r − 1 ≥ 2m+1

m−1 from (F.26).

F.3.2 SU(4) bundles

Following the same procedure one finds that here no further solutions exist besides the

already covered case χ = 0, r = 1. For λ ∈ 1
2 + Z one finds χ = 0 and a contradiction for

r 6= 1; for λ ∈ Z one has the same for λ 6= 1 and gets for λ = 1 a contradiction to (4.28).

G Explicit matrix representations for n = 3, λ = 3/2

Making the map ι1 in section 9.2.1 explicit via canonical bases one gets (β = −r + 5χ− 1)

⊕

w∈StB(Σ)

wH0
(
b,Ob(r−β+[w]χ−2)

)∗ ι1−→
⊕

w2∈StB(S2Σ)

w2 H0
(
b,Ob(−β+[w2]χ−2)

)∗
(G.1)

(using (4.30)) or, with the notation V := H0(b,Ob(1)) and S := Sym (cf. section I),

Mr : Σ̃w ⊙ S2r−5χ−1 V ∗ −→ (S̃2 Σ)w2=w w′ ⊙ Sr−5χ−1 V ∗ (G.2)

Here we use the symmetrized tensor product ⊙ (cf. section I) and elements

w ∈ {z, x, y} = StB(Σ) , w2 ∈ {z2, zx, zy, x2, xy, y2} = StB(S2Σ) (G.3)

of standard bases (StB) of Σ = zC ⊕ xC⊕ +yC and S2Σ = Sym2Σ :

w ∈ H0
(
E ,OE (3s + [w]χF )

)
, w2 ∈ H0

(
E ,OE (6s + [w2]χF )

)
(G.4)

Furthermore33 we made use of the notion of degree where [w] := 2q + 3r for w = zp xq yr

Σ̃w :=
⊕

w∈StB(Σ)

w S[w]χV ∗ = z C ⊕ xS2χ V ∗ ⊕ y S3χ V ∗ (G.5)

(S̃2 Σ)w2 :=
⊕

w2∈StB(S2Σ)

w2 S[w2]χV ∗ (G.6)

One finds in (G.2) that dim lhs = 3(2r−5χ)+5χ = 6r−10χ = 6(r−5χ)+20χ = dim rhs.

In this representation Mr (cf. section 9.2.1) is multiplication with an element

ι̃ = Cz + Bx + Ay ∈ H0
(
E ,OE (3s + rF )

)
=

⊕

w′∈StB(Σ)

w′ H0
(
b,Ob(r − [w′]χ)

)
(G.7)

=
⊕

w′∈StB(Σ)

w′ Sr−[w′] χ V = Σ̃w ⊙ Sr V

33By β < 0 ⇔ r ≥ 5χ only the space belonging to z2 can be zero-dimensional (for r = 5χ; the other case

r = 0 over F2 leads to a map between two zero-dimensional spaces where (4.16) is trivially fulfilled).
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with the accompanying coefficients

C ∈ Sr V, B ∈ Sr−2χ V, A ∈ Sr−3χ V (G.8)

For the mentioned bases one gets a block matrix (with first column not (C, 0, B,A, 0, 0)t)

Mr :

z x y

z2

zx

zy

x2

xy

y2




C 0 0

B C 0

A 0 C

0 B 0

0 A B

0 0 A




(G.9)

This is a square matrix of size
(
6r−10χ

)
×
(
6r−10χ

)
. If, say, (cf. section I for the notation)

C =

r∑

i=0

ciu
r−ivi ∈ Sr V = Hom(Sr V ∗,C) (G.10)

then we consider in (G.9) actually induced maps (or (k + 1) × (k + r + 1) - matrices)

C ⊙ Sk V ∗ : Sk+r V ∗ → Sk V ∗ (G.11)

So, in (G.9), where we indicated the expansion coefficients in x, y, z accompanying the

respective spaces in (G.2), each entry has to be suitable extended: a D in the line of w2

stands actually for D ⊙ Sr+
(
[w2]−5

)
χ−1 V ∗ (where D ∈ {A,B,C}; cf. (I.10)). This is for

D ∈ Sr−[w′]χ V in the w - column a matrix of size (r +
(
[w2] − 5

)
χ) × (2r +

(
[w] − 5

)
χ).

It will be shown that half of the determinants of all these matrices vanish, cf. section 7,

the other ones (for r ≡ χ (2)) have as factor the determinant of the following square matrix

mr of size 1
4

(
6r − 10χ

)
× 1

4

(
6r − 10χ

)
(for r = 5χ the first line is absent)

mr :




C ⊙ S
r−5χ

2
−1 V ∗

B ⊙ S
r−5χ

2
−1+2χ V ∗

A ⊙ S
r−5χ

2
−1+3χ V ∗


 ( where

C ∈ Sr V

B ∈ Sr−2χ V

A ∈ Sr−3χ V

) (G.12)

mr is mediated by multiplication with the element (G.7)). For χ = 1, r = 5 one has

C = c5u
5 + c4u

4v + c3u
3v2 + c2u

2v3 + c1uv4 + c0v
5 ∈ Sr V = S5 V = Hom(S5 V ∗,C)

B = b3u
3 + b2u

2v + b1uv2 + b0v
3 ∈ Sr−2χ V = S3 V = Hom(S3 V ∗,C)

A = a2u
2 + a1uv + a0v

2 ∈ Sr−3χ V = S2 V = Hom(S2 V ∗,C)

and gets for the map (G.12)

m5 = D5 :




b3 b2 b1 b0 0

0 b3 b2 b1 b0

a2 a1 a0 0 0

0 a2 a1 a0 0

0 0 a2 a1 a0




(G.13)
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For the case χ = 0, r = 2 one gets for C = C2 (and the same for B = B2 and A = A2)

C = c2u
2 + c1uv + c0v

2 ∈ S2 V = Hom(S2 V ∗,C) (G.14)

and gets for the map (G.12)

m3 = Dχ=0
3 :




c2 c1 c0

b2 b1 b0

a2 a1 a0


 (G.15)

H Bundles of λ = 3/2 over a χ = 0 curve

Over F2 the curve b is movable along F in E = b × F (i.e. the naive moduli space of

motions, F , is of Euler number zero). Besides the issue of an integral over a moduli space

the whole physical interpretation changes. As nevertheless some simplifications occur in

this case we illustrate the general procedure (on a formal, i.e. purely mathematical level)

also with examples from this case.

Note first that one has by (C.9) (with −β − 2 ≥ 0 by β = −(λ − 1
2 )r − 1 and (3.12))

πE∗OE(αs + βF ) =

α⊕

i=1

Ob(β) (H.1)

As we will have cause to consider the higher cohomology groups in (4.11) we note also

H1
(
E ,OE (αs + βF

)
= H1

(
b,

α⊕

i=1

Ob(β)
)

=
α⊕

i=1

H0
(
b, Ob(−β − 2)

)∗
(H.2)

= H0
(
F,OF (α)

)
⊗ H0

(
b, Ob(−β − 2)

)∗
= Cα

F ⊗ Sym−β−2V ∗

where V := H0
(
b, Ob(1)

)
∼= C2, generated by the first order monomials u and v (or linear

polynomials in t = u/v, including a constant term). We use the identifications

H0
(
b,Ob(p)

)
= C[t]≤p = Symp V = Cp+1 (H.3)

H0
(
F,OF (q)

)
= (C[x,y]/rel)≤q = Cq

F (H.4)

(p ≥ 0, q ≥ 1). The subscripts |≤p and |≤q indicate bounds on the degree (with deg t = 1

and deg x = 2, deg y = 3). We have divided out the relation rel : y2 = 4x3 − g2x− g3 (we

also apply the corresponding homogeneous version including z with deg z = 0).

With β = −(λ − 1
2 )r − 1 < 0 here we have, according to (4.30), to consider the map

H1
(
E , l(−F − c)

)
ι1−→ H1

(
E , l(−F )

)
(H.5)

or, explicitly with (H.2) and (4.30),

H0

(
F, n

(
λ −

1

2

))
⊗ H0

(
b,

(
λ +

1

2

)
r − 1

)∗
ι

−→ H0

(
F, n

(
λ +

1

2

))

⊗H0

(
b,

(
λ −

1

2

)
r − 1

)∗
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which is a map between equidimensional spaces (by (4.15) where lhs = 0 by β < 0)

Sym(λ+ 1
2
)r−1 V ∗ ⊗ C

n(λ−1

2
)

F

ι
−→ Sym(λ− 1

2
)r−1 V ∗ ⊗ C

n(λ+1

2
)

F (H.6)

making manifest the equal dimension n(λ2 − 1
4 )r. The map ι is induced by multiplication

with an element

ι̃ ∈ H0
(
E ,OE (c)

)
∼= H0(b, r) ⊗ H0(F, n) ∼= Symr V ⊗ Cn

F (H.7)

H.1 Example 3: the non-contributing case r = 1

For r = 1 we have λ ∈ 1
2 + Z(>0) as λ ∈ Z needs n and r even. So take first λ = 3/2. The

identifications (H.2)

H1
(
E , l(−F − c)

)
= H1

(
E ,OE (ns − (2r + 1)F )

)
∼= H1

(
b, ⊕n

i=1Ob(−2r − 1)
)

∼= ⊕n
i=1H

0
(
b, Ob(2r − 1)

)∗

H1
(
E , l(−F )

)
= H1

(
E ,OE (2ns − (r + 1)F )

)
∼= H1

(
b, ⊕2n

i=1Ob(−r − 1)
)

∼= ⊕2n
i=1H

0
(
b, Ob(r − 1)

)∗

show that the relevant map in (4.16) is given by the map between 2nr-dimensional spaces

Sym2r−1 V ∗ ⊗ Cn
F

ι
−→ Symr−1 V ∗ ⊗ C2n

F (H.8)

with ι multiplication by ι̃ ∈ Symr V ⊗ Cn
F. For r = 1 the map ι : V ∗ ⊗ Cn

F → C2n
F has

non-trivial kernel as multiplication with ι̃ =
∑n

i=1 pi ⊗ xi ∈ V ⊗ Cn
F maps34 (for yj = xj)

V ∗ ⊗ Cn
F ∋

∑
qj ⊗ yj −→

∑

i,j

< pi, p
⊥
j > (xi · xj) =

∑

i,j

pi ∧ pj (xi · xj) = 0 (H.9)

for qj = p⊥j (reinterpreting V ∗ as V ). So Wb = 0 as (4.16) is violated; cf. section 6.3.1.

This reasoning explains algebraically the case n = 3, found experimentally as example

3 in [8], also a special case of section 7; the argument extends to arbitrary n. In section 7

the same conclusion was argued even for any λ = l + 1/2 with l ∈ Z>0 where β = −lr − 1;

one can consider the map (using the symmetrized tensor product ⊙; cf. section I)

Sym(l+1)r−1 V ∗ ⊗
l⊙

1

Cn
F −→ Symlr−1 V ∗ ⊗

l+1⊙

1

Cn
F (H.10)

mediated by multiplication with ι̃ =
∑

pi ⊗ xi ∈ Symr V ⊗ Cn
F and may contemplate a

reasoning similar to above.

34Here the evaluation < , >: V ×V ∗ → C is, via the canonical scalar product < p, q >= p(1)q(1)+p(2)q(2),

understood as a map V ⊗ V −→ C (thus reinterpreting V ∗ as V , i.e. we take p = p(1)u + p(2)v and q =

q(1)u∗ + q(2)v∗); furthermore, by combination with the map V ∋ q = (q(1), q(2)) −→ q⊥ = (−q(2), q(1)) ∈ V ,

this can be understood as the map V ∧ V → Λ2V ∼= C as one has p ∧ q⊥ = p(1)(q⊥)(2) − p(2)(q⊥)(1) =

p(1)q(1) + p(2)q(2) =< p, q >.
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Remark. There are some further obvious exceptional cases which do not contribute.

For this note that for ι to be an isomorphism the map H0
(
F, n(λ − 1

2 )
)
⊗ H0(F, n) −→

H0
(
F, n(λ + 1

2 )
)

must be surjective; this excludes the cases n(λ− 1
2) = 1, i.e. n = 2, λ = 1

as H0(F, 3) is not generated by H0(F, 1) and H0(F, 2), and n = 2, λ = 3/2 as H0(F, 4) is

not generated by H0(F, 2) and H0(F, 2) (in both cases one can not get y from x).

I The symmetrized tensor product

Let us consider symmetrized tensor powers of the vector spaces

Σ = z C⊕ xC ⊕ y C (I.1)

V = H0
(
b,O(1)

)
= uC ⊕ v C (I.2)

Symmetrized tensor powers of degree n mean that one considers expressions of order n

(linear combinations of monomials which themselves consist of n factors of basis elements)

within the polynomial algebra on the basis elements of the vector space. Thus one has for

example (with Sk := Symk and the dual basis elements u∗, v∗ of V ∗)

S2 Σ = z2 C ⊕ zxC ⊕ zy C ⊕ x2 C ⊕ xy C ⊕ y2 C (I.3)

S3 V ∗ = (u∗)3 C ⊕ (u∗)2v∗ C ⊕ u∗(v∗)2 C ⊕ (v∗)3 C (I.4)

S2 V = u2 C ⊕ uv C ⊕ v2 C (I.5)

where we have used the polynomial notation for the composed elements. In general we

denote by ⊙ the symmetric tensor product. So one has (with · for evaluation; let n ≥ m)

Sa V ⊙ Sb V = Sa+b V (I.6)

Sn V ∗ · Sm V = Sn−m V ∗ (I.7)

For example one has

u∗3v∗2 · (au2 + buv + cv2) = (cu∗2 + bu∗v∗ + av∗2)u∗ (I.8)

We will apply the prescription · −→ · ⊙ Sk V ∗ (i.e. symmetric product with Sk V ∗),

not only to spaces, but also, functorially, to maps f : A −→ B. Then we use the notation

f ⊙Sk V ∗ : A ⊙ Sk V ∗ −→ B ⊙ Sk V ∗ (I.9)

If, to give an example, C = c0u
3 + c1u

2v + c2uv2 + c3v
3 ∈ S3 V = Hom(S3 V ∗,C),

then one gets for C ⊙ S2 V ∗ : S5 V ∗ −→ S2 V ∗ the matrix representation

C⊙S2 V ∗ =




c0 c1 c2 c3 0 0

0 c0 c1 c2 c3 0

0 0 c0 c1 c2 c3


 (I.10)
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I.1 Interpretation of the resultant criterion

Let f =
∑m

i=0 aiz
i and g =

∑n
i=0 biz

i polynomials in the complex variable z (with

am 6= 0, bn 6= 0; homogeneous polynomials are treated analogously). Euler and Sylvester

remarked that f and g have a common zero z∗ precisely if a certain determinant vanishes,

the resultant Res(f, g) of f and g, a polynomial of degree m + n in the coefficients ai and

bi. If we take for example m = 5 and n = 2 the determinant in question is that of




a5 0 b2 0 0 0 0

a4 a5 b1 b2 0 0 0

a3 a4 b0 b1 b2 0 0

a2 a3 0 b0 b1 b2 0

a1 a2 0 0 b0 b1 b2

a0 a1 0 0 0 b0 b1

0 a0 0 0 0 0 b0




(I.11)

(or of its transpose). For the assertion f = (z − z∗)f̃ , g = (z − z∗)g̃ is equivalent to have

f g̃ = gf̃ (I.12)

for some polynomials f̃ , g̃ of degree m − 1 and n − 1 (f̃ , g̃ 6= 0). For the equivalence note

that clearly not all linear factors of f can come from f̃ ; the other direction is obvious.

From the equality (I.12) of polynomials of degree m + n − 1 the classical reasoning

proceeds by comparison of their m + n coefficents to the indicated matrix of a system of

m + n linear equations. More in the spirit of our investigation is to argue as follows. For

f ∈ Sm V ∼= Hom(C, Sm V ) one has the map given by multiplication with f

f ⊙Sk V ∈ Hom(Sk V, Sk+m V ) (I.13)

(correspondingly for g). With this definition consider the following map

m : Sn−1V ⊕ Sm−1V ∋ (p, q) −→ (f ⊙Sn−1 V ) p + (g⊙Sm−1V ) q = fp + gq ∈ Sm+n−1V

Now (I.12) just expresses the fact m( (g̃,−f̃) ) = 0, i.e. that the map m is not injective.

However m has just (I.11) as matrix and Res(f, g) = det m.

Example 1 has Res(B2, A1) = det(B ⊕ A⊙V ∗) with B ⊕ A⊙V ∗ ∈ Hom(S2 V ∗,C⊕

V ∗), cf. (A.5), and Res(C4, A1) = det(C ⊕ A⊙S3 V ∗), cf. (A.11), (A.12).

I.2 Polynomials having more that one root in common

The classical case gives a determinantal criterion for two polynomials to have one root in

common. We will also be interested in the case of having more roots in common.

Let us assume that (where deg f̃ = m − 2,deg g̃ = n − 2)

f = (z − z1)(z − z2)f̃ (I.14)

g = (z − z1)(z − z2)g̃ (I.15)
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As before an precise criterion for this case is a relation

fp = gq (I.16)

where deg q̃ = m − 2,deg p̃ = n − 2. Equivalently consider the map

m : Sn−2V ⊕ Sm−2V ∋ (p, q) −→ fp + gq ∈ Sm+n−2V (I.17)

By (I.16) we search a criterion for ker m 6= 0. As dim sourcem = m + n − 2 and

dim target m = m + n − 1 we should consider m restricted (in its target) to its image.

To describe this in greater detail we focus on the example m = 2, n = 3 which is of

importance in section 9.2.1 (cf. example 2). So let f =
∑2

i=0 fiz
i, g =

∑3
i=0 giz

i and

m : V ⊕ C ∋ (p, q) −→ fp + gq ∈ S3V (I.18)

(where p = p1z + p0, q = q0) of matrix Mat[g, f ]tr (cf. (I.20) without first row). Now

h =
3∑

i=0

hiz
i ∈ im m ⇐⇒ detMat[h, g, f ] = −

3∑

i=0

(−1)ihiMi = 0 (I.19)

where the matrix of the map h ⊕ g ⊕ f◦V ∗ : S3V ∗ −→ C ⊕ C ⊕ V ∗ occurs

Mat[h, g, f ] =




h3 h2 h1 h0

g3 g2 g1 g0

f2 f1 f0 0

0 f2 f1 f0


 (I.20)

with minors Mi associated to the development w.r.t. the first row. To see (I.19) one

may eliminate p1, p0, q0 from the coefficents of a typical image element to get directly∑3
i=0(−1)ihiMi = 0. Note that one gets from taking h = f or fz the relations f2M2 =

−f0M0 + f1M1 and f2M3 = −f0M1 + f1M2 between the minors. A basis for the three-

dimensional image of m is given by fz, f and g (which explains (I.19) in an elementary

way). For these elements to become linearly dependent one finds by direct inspection

ker m 6= 0 ⇐⇒ M0 = 0 = M1 (I.21)

A common root of M0 and M1 implies of course a second order zero of the resultant as

Res(g, f) = −
1

f1
det

(
M3 M2

M1 M0

)
=

1

f2
2

det




f0 f1 f2

M1 M0 0

0 M1 M0


 (I.22)
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